Supplementary material D - Liquid compositions calculated for A- and B-type antecrysts and C-type phenocrysts.

D1. Partition coefficients selected for the calculation of magmatic liquids at chemical equilibrium with clinopyroxene ante- and phenocrysts.

D2. Calculated compositions (incompatible trace elements) of the liquids in equilibrium with A- and Btype antecrysts and C- type phenocrysts.

D1. Partition coefficients applied to the calculation of magmatic liquids at chemical equilibrium with clinopyroxene antecrysts and phenocrysts form the investigated dikes.

Antecryst	Sample	Magmatic liquid ¹	Kd values	Reference		
			Y: 0.51			
4.2	070	Dacanita	Zr: 0.2	1 1 1 1 1 1 1 1 1 1		
AS	K79	Basanne	Nb: 0.005	Adam & Green (2006)		
			La: 0.07			
			Y: 0.79			
A F	G	Lamprophyre	Zr: 0.68	$l = \frac{1}{2} \left(\frac{1}{2} \right)$		
AS	G	(dike matrix)	Nb: 0.07	Obide et al. (2014a)		
			La: 0.18			
R2			Y: 1.5			
	max	Myaskitic phonolite	Zr: 1.7	Olip & Wolf (2010)		
		Шах	(lava)	Nb: 0.04		
			La: 0.7			
			Y: 1.53			
B 5	R	Trachyphonolite	Zr: 0.3	Fedele et al. (2009)		
00	IX.	(lava)	Nb: 0.01			
			La: 0.26			
			Y: 0.905			
	SM-DN	Tephrite/camptonite	Zr: 0.567	Ambrosia & Azzone (2018)		
	JIVI-LIN	(dike matrix)	Nb:0.014	AIIIDI 0310 & AZZOITE (2018)		
			La: 0.148			

References

Adam, J., Green, T., 2006. Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contributions to Mineralogy and Petrology, 152 (1), 1-17. http://doi.org/10.1007/s00410-006-0085-4

Ubide, T., Galé, C., Arranz, E., Lago, M., Larrea, P., 2014a. Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): a record of magma history and a window to mineral-melt partitioning. Lithos, 184, 225-242. https://doi.org/10.1016/j.lithos.2013.10.029

Olin, P.H., Wolff, J.A., 2010. Rare earth and high field strength element partitioning between iron-rich clinopyroxenes and felsic liquids. Contributions to Mineralogy and Petrology, 160 (5), 761-775. https://doi.org/10.1007/s00410-010-0506-2

Fedele, L., Zanetti, A., Morra, V., Lustrino, M., Melluso, L., Vannucci, R., 2009. Clinopyroxene/liquid trace element partitioning in natural trachyte–trachyphonolite systems: insights from Campi Flegrei (southern Italy). Contributions to Mineralogy and Petrology, 158 (3), 337-356. https://doi.org/10.1007/s00410-009-0386-5

Ambrosio, M.R., Azzone, R.G., 2018. The Influence of Crystal and Melt Compositions On the REE+Y Partitioning Between Clinopyroxene and Basanitic/tephritic Melts of Cretaceous Alkaline Magmatism On the Southeastern Part of the South American Platform, Southeast Brazil. The Canadian Mineralogist, 56, 303-329. https://doi.org/10.3749/canmin.1700024

D2. (Calculated compositions (incompatible trace elements) of the liquids in equilibrium with	A- and B-
	type antecrysts and C- type phenocrysts.	

Macro	cryst			срх А	3		cpx A5		cpx B3	
st ons	Y	27.21	29.34	25.42	23.3	24.46	87.48	22.18	19.14	19.49
sitic	Zr	337.78	256.74	179.62	316.04	472.01	153.56	786	553.78	663.67
acre	Nb	4.21	3.63	0.95	4.78	5.34	0.744	6.28	6.24	3.63
⊂ou Z	La	25.5	36.89	31.27	24.2	30.61	41.79	46.93	39.71	42.04
, cd	Y	0.51	0.51	0.51	0.51	0.51	0.79	1.5	1.5	1.5
ed k	Zr	0.2	0.2	0.2	0.2	0.2	0.68	1.7	1.7	1.7
lect	Nb	0.005	0.005	0.005	0.005	0.005	0.07	0.04	0.04	0.04
Se	La	0.07	0.07	0.07	0.07	0.07	0.18	0.7	0.7	0.7
σ	Y	53.35	57.53	49.84	45.69	47.96	110.73	14.79	12.76	12.99
late uid	Zr	1688.90	1283.70	898.10	1580.20	2360.05	225.82	462.35	325.75	390.39
alcu liqu	Nb	842.00	726.00	190.00	956.00	1068.00	10.63	157.00	156.00	90.75
Ŭ	La	364.29	527.00	446.71	345.71	437.29	232.17	67.04	56.73	60.06

Macrocryst					срх ВЗ				cpx B5	
ocryst sitions	Y	23.48	22.23	25.18	14.51	34.93	14.72	30.47	28.27	27.13
	Zr	854.99	618.21	662.33	711.03	593.89	839.05	466.67	343.97	309.71
acro	Nb	3.83	3.04	4.28	1.76	8.14	1.8	3.78	2.36	2.07
Σū	La	36.81	40.5	44.26	27.29	43.55	35.62	32.47	35.21	24.11
þ	Y	1.5	1.5	1.5	1.5	1.5	1.5	1.53	1.53	1.53
ed F	Zr	1.7	1.7	1.7	1.7	1.7	1.7	0.3	0.3	0.3
lect	Nb	0.04	0.04	0.04	0.04	0.04	0.04	0.01	0.01	0.01
Se	La	0.7	0.7	0.7	0.7	0.7	0.7	0.26	0.26	0.26
σ	Y	15.65	14.82	16.79	9.67	23.29	9.81	19.92	18.48	17.73
late	Zr	502.94	363.65	389.61	418.25	349.35	493.56	1555.57	1146.57	1032.37
liqu	Nb	95.75	76.00	107.00	44.00	203.50	45.00	378.00	236.00	207.00
Ü	La	52.59	57.86	63.23	38.99	62.21	50.89	124.88	135.42	92.73

Macrocryst		cpx B5								срх С	
st ins	Y	34.17	32.15	53.99	43.84	49.81	30.47	37.76	25.9	28.6	
ocry sitic	Zr	488.35	461.96	407.94	339.71	414.4	466.67	877.31	149	212	
acro npo	Nb	3.94	3.47	4.63	1.085	4.77	3.78	15.31	1.51	5.14	
CO CO	La	33.24	30.4	57.22	57.92	51.13	32.47	60.42	14.5	20.1	
p)	Y	1.53	1.53	1.53	1.53	1.53	1.53	1.53	0.905	0.905	
ed k	Zr	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.567	0.567	
lect	Nb	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.014	0.014	
Se	La	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.148	0.148	
þ	Y	22.33	21.01	35.29	28.65	32.56	19.92	24.68	28.62	31.60	
alculate liquid	Zr	1627.83	1539.87	1359.80	1132.37	1381.33	1555.57	2924.37	262.79	373.90	
	Nb	394.00	347.00	463.00	108.50	477.00	378.00	1531.00	107.86	367.14	
ü	La	127.85	116.92	220.08	222.77	196.65	124.88	232.38	97.97	135.81	

D2. Calculated compositions (incompatible trace elements) of the liquids in equilibrium with A- and B-type antecrysts and C- type phenocrysts.

			51	5		71 1	5			
Macrocryst						срх С				
cryst sitions	Y	20.6	19.8	20.5	28.1	25.3	52.7	16.4	23.3	21
	Zr	85	90	120	166	138	456	101	143	108
npo	Nb	0.564	0.486	0.92	1.71	1.65	6.11	0.591	1.4	0.72
Z G	La	8.03	9.2	12.1	12.3	11	65.3	9.55	10.9	8.48
g	Y	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905
ed	Zr	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
lect	Nb	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Se	La	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148
σ	Y	22.76	21.88	22.65	31.05	27.96	58.23	18.12	25.75	23.20
late uid	Zr	149.91	158.73	211.64	292.77	243.39	804.23	178.13	252.20	190.48
alcu liqu	Nb	40.29	34.71	65.71	122.14	117.86	436.43	42.21	100.00	51.43
Ŭ	La	54.26	62.16	81.76	83.11	74.32	441.22	64.53	73.65	57.30

Macrocryst						срх С				
ocryst sitions	Y	41.3	23.4	38.5	22.8	34.1	34.3	28.5	18	16.8
	Zr	408	161	311	154	324	292	191	90.9	78.5
acro	Nb	4.96	1.21	3.52	1.36	3.63	2.83	1,670	0.671	0.613
ZΩ	La	38.7	13.5	48.6	14.9	29.3	27.5	21.5	10.4	6.69
py	Y	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905
ed x	Zr	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
lect	Nb	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Se	La	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148
σ	Y	45.64	25.86	42.54	25.19	37.68	37.90	31.49	19.89	18.56
late	Zr	719.58	283.95	548.50	271.60	571.43	514.99	336.86	160.32	138.45
alcu liqu	Nb	354.29	86.43	251.43	97.14	259.29	202.14	119285.71	47.93	43.79
Ŭ	La	261.49	91.22	328.38	100.68	197.97	185.81	145.27	70.27	45.20

Macro	cryst					срх С				
ocryst sitions	Y	15.7	21.5	28	30.3	18.7	28.4	40.5	13.9	40.6
	Zr	70.4	108	251	243	103	237	169	79.3	465
acro	Nb	0.514	0.993	2.53	2.59	0.834	2.17	1.75	0.431	7.26
Σoc	La	6.76	9.87	22.9	27.4	10.4	22.9	77.7	8.09	58.2
g	Y	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905
ed F	Zr	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
lect	Nb	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Se	La	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148
q	Y	17.35	23.76	30.94	33.48	20.66	31.38	44.75	15.36	44.86
alculate liquid	Zr	124.16	190.48	442.68	428.57	181.66	417.99	298.06	139.86	820.11
	Nb	36.71	70.93	180.71	185.00	59.57	155.00	125.00	30.79	518.57
ü	La	45.68	66.69	154.73	185.14	70.27	154.73	525.00	54.66	393.24

D2. Calculated compositions (incompatible trace elements) of the liquids in equilibrium with A- and B- type antecrysts and C- type phenocrysts.

Macro	cryst					срх С				
st ins	Y	25	31.7	27.1	37.1	29.1	27	45.4	29.2	17.1
sitio	Zr	226	438	299	630	311	377	443	345	166
acro	Nb	1.57	9.98	2.64	8.71	3.22	3.88	6.2	3.14	2.36
E G	La	17	41.2	24.3	52.2	29.3	30.3	50.9	27.1	14.5
g	Y	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905
ed k	Zr	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
lect	Nb	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Se	La	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148
q	Y	27.62	35.03	29.94	40.99	32.15	29.83	50.17	32.27	18.90
late	Zr	398.59	772.49	527.34	1111.11	548.50	664.90	781.31	608.47	292.77
liqu	Nb	112.14	712.86	188.57	622.14	230.00	277.14	442.86	224.29	168.57
Ŭ	La	114.86	278.38	164.19	352.70	197.97	204.73	343.92	183.11	97.97
Macro	cryst					cpx C				
S t	Y	22.6	38.5	25.1	31.1	48.7	44.6	52.5	62.6	29.6
crys	Zr	215	386	227	508	560	462	373	668	469
cro	Nb	2.19	5.61	1.74	4.56	33.600	13.180	22.1	22.3	6.46
Ma	La	17.7	36.1	15.6	34.6	134	87.7	141	82.3	40.9
	Y	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905
P Ke	Zr	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
ecte	Nb	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Sel	La	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148
	Y	24.97	42.54	27.73	34.36	53.81	49.28	58.01	69.17	32.71
ateo	Zr	379.19	680.78	400.35	895.94	987.65	814.81	657.85	1178.13	827.16
liqu	Nb	156.43	400.71	124.29	325.71	2400000.00	941428.57	1578.57	1592.86	461.43
ů	La	119.59	243.92	105.41	233.78	905.41	592.57	952.70	556.08	276.35
Macro	cryst					cpx C				
	Y	29.1	46.2	28.5	24.6	53.6	30.5	22.4	15.6	30.1
cryst	Zr	257	727	255	264	568	301	294	137	454
croc	Nb	5.66	9.1	3.82	5.95	160	5.95	1.43	0.981	2.49
Ma	La	26	55.4	27.9	21.1	96.6	32.4	17.5	10.5	32.5
	Y	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905
d Ke	Zr	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
ecte	Nb	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Sel	La	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148
	Y	32.15	51.05	31.49	27.18	59.23	33.70	24.75	17.24	33.26
atec id	Zr	453.26	1282.19	449.74	465.61	1001.76	530.86	518.52	241.62	800.71
liqu	Nb	404.29	650.00	272.86	425.00	11428.57	425.00	102.14	70.07	177.86
ت	La	175.68	374.32	188.51	142.57	652.70	218.92	118.24	70.95	219.59

Macrocryst						срх С				
st ons	Y	14.7	34.7	36.5	17.7	17.4	21.5	18	19.7	9.88
ocry sitic	Zr	92.4	547	321	161	196	172	268	163	1.39
acro npo	Nb	0.348	6.65	3.45	0.899	0.92	1.19	2.53	0.95	0.889
Cor Cor	La	7.19	71.6	32.9	11.4	16.7	11.1	19.8	11.3	0.018
çd	Y	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905	0.905
ed I	Zr	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
lect	Nb	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Se	La	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.148
d	Y	16.24	38.34	40.33	19.56	19.23	23.76	19.89	21.77	10.92
alculate liquid	Zr	162.96	964.73	566.14	283.95	345.68	303.35	472.66	287.48	2.45
	Nb	24.86	475.00	246.43	64.21	65.71	85.00	180.71	67.86	63.50
Ŭ	La	48.58	483.78	222.30	77.03	112.84	75.00	133.78	76.35	0.12

D2. Calculated compositions (incompatible trace elements) of the liquids in equilibrium with A- and B- type antecrysts and C- type phenocrysts.