Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

Supplementary Material - B - Tables of mineral compositions by WDS - electron microprobe analysis

Calibration routines and standards for each element and mineral analysed by
electron microprobe.

Major element concentration of olivine from all samples. Structural formula Table B2 calculated on the basis of 4 oxygens . C - core; R - rim; I - intermediated; mega megacrystals, macro - macrocrysts, micro - microcrysts.

- Table B3Major element concentration of monticellite from all samples. Structural formula
calculated on the basis of 4 oxigens. C core; R rim; I intermediate.
- Table B4Major element compositions of perovskite from TR-IV LM-I. Structural formula
calculated on the basis of 4 oxigens. C core; R rim; I intermediate.
- Table B5Major element compositions of ilmenite from LMI all samples. Structural formula
calculated on the basis of 6 oxigens. C core; R rim; I intermediate.

Major element compostions of clinopyroxene from TR-IV and LM-I. Structural Table B6 formula calculated on the basis of 6 oxigens, following Morimoto (1988). C - core; R - rim; I - intermediate; mt - matrix; mega - megacryst

Major element compositons of garnet from TR-IV . Structural formula calculated Table B7 on the basis of 8 cations and 12 anions. Endmembers calculated following Locock, (2008). C - core; R - rim; I - intermediate.

Table B1 - Ca	libration routines and	l standards for eacl	element and	l mineral	analysed by	y electron	microprobe
---------------	------------------------	----------------------	-------------	-----------	-------------	------------	------------

Element	X-ray line	Crystal	Standards	Standards	Standards	Standards
			Olivine/monticellite ¹	Perovskite ²	Ilmenite	Pyroxene
S1	Κα	IAP	diopside	anorthite	diopside	olivine
Al	Κα	TAP	anorthite_%ele		Spinel_%ele	microcline
Fe	Κα	LIFL	fayalite	ilmenite	ilmenite	fayalite
Mn	Κα	LIFL	fayalite		fayalite	MnTiO ₃
K	Κα	PETJ	Ortoclase		Ortoclase	
Ca	Κα	PETJ	Wollastonite	Wollastonite	Wollastonite	Wollastonite
Sr	Lα	PETJ		strontianite		
Ti	Κα	LIFL	Rutile	Rutile	ilmenite	MnTiO ₃
Ва	Lα	LIFL		benitoite		MnTiO ₃
Na	Κα	TAPH	Albite	Albite	Albite	Albite
Mg	Κα	TAPH	basalt_#8		diopside	olivine
Ni	Κα	LIFL	glass_rhyolitic_#37		glass_rhyolitic_ #37	NiO
Cr	Κα	LIFL	chromite_%ele		chromite_%ele	Cr_2O_3
Zn	Κα	LIFL			Willemite	
Nb	Lα	PETJ		ilmenite	ilmenite	
Nd	Lα	LIFL		neodymium- phosphate		
La	Lα	LIFL		lanthanium- phosphate		
Sm	Lα	LIFL		samarium-phosphate		
Pr	Lβ	LIFL		praseodymium- phosphate		
Zr	Lα	PETJ		zircon		
Th	Μα	PETJ		glass_rhyolitic_#32		
Ce	Lα	LIFL		cerium-phosphate		

¹15.0 kV, 20nA ²25.0 kV, 100 nA

> DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

C - core; R - rim; I - intermediate; mega - megacrystals, macro - macrocrysts, micro - microcrysts.

Sample	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	Č LM-2	LM-2	LM-2	LM-2	LM-2	LM-2
Grain/Analysis	01/01	01/02	02/03	02/04	03/05	03/06	04/07	04/08	05/09	05/10	06/11	06/12	07/13	07/14	08/15
Location	С	R	C	R	С	Я	Я	C	С	Я	С	К	C	Я	С
Crystal type	mega	mega	mega	mega	mega	mega	macro	macro	macro	macro	micro	micro	micro	micro	macro
SiO_2	40.17	40.46	40.61	40.40	40.19	39.86	39.71	40.66	40.23	39.82	40.63	40.04	40.45	40.16	40.06
Al_2O_3	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.05	0.04	0.00
FeO	8.50	9.67	10.04	10.31	9.89	13.50	13.33	10.13	11.78	13.61	9.57	12.77	10.37	10.38	12.51
MnO	0.16	0.15	0.15	0.14	0.17	0.21	0.21	0.15	0.17	0.19	0.16	0.21	0.11	0.12	0.24
NiO	0.39	0.39	0.35	0.41	0.36	0.20	0.21	0.38	0.34	0.24	0.39	0.16	0.44	0.46	0.33
CaO	0.02	0.02	0.01	0.01	0.02	0.06	0.07	0.05	0.02	0.09	0.01	0.05	0.13	0.14	0.02
K_2O	0.01	0.00	0.00	0.00	0.01	0.01	0.02	0.00	0.00	0.01	0.02	0.00	0.00	0.02	0.00
TiO_2	0.00	0.03	0.00	0.00	0.00	0.02	0.02	0.00	0.04	0.09	0.01	0.00	0.06	0.02	0.00
Cr_2O_3	0.01	0.00	0.08	0.00	0.00	0.00	0.05	0.03	0.00	0.10	0.00	0.01	0.06	0.12	0.00
MgO	50.34	49.19	48.79	48.96	48.94	46.02	46.21	48.72	47.57	45.89	49.62	46.80	48.53	48.73	47.32
Na_2O	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.02	0.00	0.01	0.00	0.01	0.00
Total:	09.66	99.92	100.06	100.22	99.58	99.66	99.83	100.12	100.17	100.06	100.41	100.07	100.20	100.20	100.47
Si	0.986	0.994	0.997	0.992	0.992	0.996	0.993	0.998	0.995	0.995	0.993	0.995	0.994	0.988	0.992
\mathbf{AI}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000
Fe	0.174	0.199	0.206	0.212	0.204	0.282	0.279	0.208	0.244	0.284	0.196	0.265	0.213	0.214	0.259
Mn	0.003	0.003	0.003	0.003	0.004	0.004	0.005	0.003	0.003	0.004	0.003	0.004	0.002	0.003	0.005
Ni	0.008	0.008	0.007	0.008	0.007	0.004	0.004	0.008	0.007	0.005	0.008	0.003	0.009	0.009	0.006
Ca	0.000	0.001	0.000	0.000	0.001	0.002	0.002	0.001	0.000	0.002	0.000	0.001	0.003	0.004	0.001
K	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000
Ï	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.000	0.000	0.001	0.000	0.000
Cr	0.000	0.000	0.002	0.000	0.000	0.000	0.001	0.001	0.000	0.002	0.000	0.000	0.001	0.002	0.000
Mg	1.842	1.801	1.786	1.792	1.800	1.714	1.722	1.783	1.754	1.709	1.807	1.734	1.778	1.788	1.746
Na	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
Cations:	3.014	3.006	3.002	3.008	3.008	3.004	3.007	3.002	3.004	3.003	3.007	3.005	3.003	3.010	3.009
Fayalite	0.09	0.10	0.10	0.11	0.10	0.14	0.14	0.10	0.12	0.14	0.10	0.13	0.11	0.11	0.13
Forsterite	0.91	0.90	06.0	0.89	0.90	0.86	0.86	0.90	0.88	0.86	0.90	0.87	0.89	0.89	0.87

DOI: 10.1590/2317-4889202020190087

OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS

Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

C - core: R - rim: I - intermediate: mega - megacrystals. macro - macrocrysts, micro - microcrysts.

	Gra		U U		Γ	DO	1: 10	.159	90/2	317	-488	3920	202	019	008	7											-		1
Sample	in/Analysis	Location	rystal type	SiO_2	Al_2O_3	FeO	MnO	NiO	CaO	$ m K_2O$	TiO_2	Cr_2O_3	MgO	Na_2O	Total:	Si	AI	Fe	Mn	Ni	Ca	К	Ti	Cr	Mg	Na	Cations:	Fayalite	orsterite
LM-2	08/16	R	macro	40.07	0.00	12.43	0.22	0.33	0.04	0.01	0.05	0.01	47.15	0.01	100.32	0.993	0.000	0.258	0.005	0.007	0.001	0.000	0.001	0.000	1.742	0.001	3.006	0.13	0.87
LM-2	09/17	C	micro	40.20	0.04	11.65	0.15	0.39	0.15	0.00	0.06	0.09	47.54	0.03	100.30	0.993	0.001	0.241	0.003	0.008	0.004	0.000	0.001	0.002	1.751	0.001	3.005	0.12	0.88
LM-2	09/18	Ч	micro	40.45	0.04	11.61	0.16	0.37	0.13	0.00	0.00	0.08	47.46	0.02	100.32	0.998	0.001	0.240	0.003	0.007	0.004	0.000	0.000	0.002	1.746	0.001	3.001	0.12	0.88
LM3-1	10/19	C	mega	40.32	0.00	10.10	0.18	0.40	0.01	0.01	0.01	0.00	49.29	0.02	100.33	0.989	0.000	0.207	0.004	0.008	0.000	0.000	0.000	0.000	1.802	0.001	3.012	0.10	0.90
LM3-1	10/20	Ч	mega	39.55	0.00	12.22	0.17	0.29	0.02	0.00	0.03	0.03	48.12	0.00	100.42	0.979	0.000	0.253	0.004	0.006	0.001	0.000	0.000	0.001	1.776	0.000	3.020	0.12	0.88
LM3-1	11/21	C	mega	40.90	0.01	7.46	0.12	0.35	0.04	0.00	0.01	0.03	51.20	0.00	100.13	0.992	0.000	0.151	0.002	0.007	0.001	0.000	0.000	0.000	1.852	0.000	3.007	0.08	0.92
LM3-1	11/22	R	mega	41.10	00.0	7.53	0.13	0.37	0.03	0.00	0.05	0.01	50.91	0.01	100.14	0.997	0.000	0.153	0.003	0.007	0.001	0.000	0.001	0.000	1.841	0.000	3.002	0.08	0.92
LM3-1	12/23	C	mega	40.20	0.02	12.18	0.16	0.31	0.07	0.00	0.02	0.00	47.50	0.00	100.46	0.993	0.001	0.252	0.003	0.006	0.002	0.000	0.000	0.000	1.749	0.000	3.006	0.13	0.87
LM3-1	12/24	Ч	mega	40.36	0.01	11.79	0.16	0.36	0.05	0.02	0.00	0.00	47.15	0.01	99.91	1.000	0.000	0.244	0.003	0.007	0.001	0.001	0.000	0.000	1.742	0.001	3.000	0.12	0.88
LM3-1	13/25	C	macro	40.73	0.01	8.18	0.10	0.37	0.01	0.00	0.00	0.01	51.15	0.00	100.55	0.988	0.000	0.166	0.002	0.007	0.000	0.000	0.000	0.000	1.849	0.000	3.012	0.08	0.92
LM3-1	13/26	Ч	macro	40.22	0.00	13.91	0.20	0.19	0.08	0.00	0.02	0.04	45.79	0.01	100.45	1.000	0.000	0.289	0.004	0.004	0.002	0.000	0.000	0.001	1.698	0.001	2.999	0.15	0.85
LM3-1	14/27	C	macro	39.93	0.05	11.29	0.13	0.39	0.11	0.00	0.06	0.11	48.22	0.01	100.32	0.986	0.002	0.233	0.003	0.008	0.003	0.000	0.001	0.002	1.774	0.001	3.012	0.12	0.88
LM3-1	14/28	Ч	macro	40.47	0.05	10.89	0.16	0.40	0.14	0.02	0.03	0.08	47.90	0.02	100.16	0.997	0.001	0.224	0.003	0.008	0.004	0.001	0.001	0.002	1.760	0.001	3.001	0.11	0.89
LM3-1	15/29	C	macro	39.89	0.00	13.15	0.15	0.34	0.03	0.00	0.04	0.01	47.18	0.01	100.80	0.987	0.000	0.272	0.003	0.007	0.001	0.000	0.001	0.000	1.741	0.000	3.012	0.14	0.86
LM3-1	15/30	Ч	macro	40.25	0.00	13.01	0.22	0.31	0.08	0.00	0.03	0.02	46.37	0.00	100.29	0.999	0.000	0.270	0.005	0.006	0.002	0.000	0.001	0.000	1.716	0.000	3.000	0.14	0.86

OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS

Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

C - core; R - rim; I - intermediate; mega - megacrystals, macro - macrocrysts, micro - microcrysts.

| The concernance, integar 1 mean operation, intervortance, integar 1 mean operation Think 1 model LM3-1 LM3-2
 | The concerve and the product and the product of the product of the product and the product of the product and the prod
 | The concent is integrated and incrementation in the interm int
 | The contract integer integer of the contract integer of the contract integer i | C - COF, N = 1111, - 1112C1 and colspan="11:25: 11:25;
11:25; 11 | C - Cutc, N - Time, 1 - Time Contract, Target 0 years, Tar
 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | |

--

--
--
--
--	--
---	--
M3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 <thl< td=""><td>M3-1 LM3-1 <thl< td=""><td>M3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2</td><td>M3-1 LM3-1 LM3-1 LM3-1 LM3-2 <th< td=""><td>M3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 <th< td=""><td>M3-1 I.M3-1 I.M3-1 I.M3-1 I.M3-2 I.M3-2<!--</td--><td>Current Mini-Limber Integration Interprotement (M_{12}) I.M3-1 I.M3-2 I.M3-2</td></td></th<><td>Milli LM3-1 LM3-2 LM3-2</td><td>Chronic Principandic Integration Inductor Inductorys, Induct Internative, Integratys, Induct Internative, Integratys, Induct Inductor Inductorys, Induct Internative, Integraty, Induct Internative, Integraty, Induct Induct Induct Induct Induct Induct Induct Internative, Integraty, Induct Induc</td></td></th<></td></thl<></td></thl<>	M3-1 LM3-1 LM3-1 <thl< td=""><td>M3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2</td><td>M3-1 LM3-1 LM3-1 LM3-1 LM3-2 <th< td=""><td>M3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 <th< td=""><td>M3-1 I.M3-1 I.M3-1 I.M3-1 I.M3-2 I.M3-2<!--</td--><td>Current Mini-Limber Integration Interprotement (M_{12}) I.M3-1 I.M3-2 I.M3-2</td></td></th<><td>Milli LM3-1 LM3-2 LM3-2</td><td>Chronic Principandic Integration Inductor Inductorys, Induct Internative, Integratys, Induct Internative, Integratys, Induct Inductor Inductorys, Induct Internative, Integraty, Induct Internative, Integraty, Induct Induct Induct Induct Induct Induct Induct Internative, Integraty, Induct Induc</td></td></th<></td></thl<>
- IIIID, 1 - IIIICIIICOLAGE, IIEGA - IIEGALOYSARIS, IIACIO - IIIACIO - IIICIIICULAGE, IIEGA - IIEGALOYSARIS, IIACIO - IIICIO - IIICIO IIIA3-1 LM3-1 LM3-2 J902 J902 </td <td>- Imp. 1 - Interimentacy, integra - Integracy ystats, intervolucy see, integra - Integracy ystats, intervolucy see, integra - Integracy ystats, intervolucy see, integra - Integracy with the intervolucy see, integra - Integracy with the intervolucy see, intervolucu see, intervolucy see, intervolucy see, intervolucy see, in</td> <td>- Indicato - Indicato - Indicato Jysis, Indicato - Indicato LW3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 <t< td=""><td>- Interfactory sets, interfor - Interfactory sets, in</td><td>- Important in the intermediate, incomposite the product of the product of</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>THIL I - Intermediate, inega - Tregacty station - Link of the field of t</td><td>$\begin{array}{c} 1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<></td>	- Imp. 1 - Interimentacy, integra - Integracy ystats, intervolucy see, integra - Integracy ystats, intervolucy see, integra - Integracy ystats, intervolucy see, integra - Integracy with the intervolucy see, integra - Integracy with the intervolucy see, intervolucu see, intervolucy see, intervolucy see, intervolucy see, in
Interfluctuate, inega - inegary stary, inacto - indecidate, inega Indecidate, inega - inegary stary, inacto - inacto LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 I7/33 17/34 18/35 18/36 19/37 19/37 C R C R C R Micro micro micro micro mega mega 39.99 40.18 40.79 40.38 39.77 39.91 0.01 0.02 0.01 0.00 0.02 0.02 0.15 0.13 0.13 0.14 0.15 0.276 0.04 0.14 0.01 0.00 0.00 0.01 0.04 0.14 0.01 0.00 0.00 0.01 0.04 0.02 0.00 0.00 0.00 0.01 0.044 0.02 0.00 0.00 0.00 0.00 0.003 0.000 0.000 0.001 0.000 0.00 0.043 0.022 </td <td>Interference, inegat - inegat) years, interfor - inegat 17/33 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 LM3-2 LM3-3 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 LM3-2 LM3-3 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 LM3-2 LM3-3 LM3-1 LM3-2 <th co<="" td=""><td>Internitionate, inega - inegar/ystats, inactor - inactor/ystats, inctor - inactor/ystats, indtor - inactor/ystats, indtor-inactor/ystats, indtor-inactor/ystats, indto-inactor/ystats, indto-inacto-inactor/ystats, indto-inac</td><td>Interfined are, integar - integary state, integar - integary state, integar Interfined are, integar - integary state, integar - integary state, integar - integary state, integar - integary state, integary - integary state, integary - integary state, integary - inte</td><td>Internation, integrating interport parts, interport, interport, parts, interp</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th></td>	Interference, inegat - inegat) years, interfor - inegat 17/33 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 LM3-2 LM3-3 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 LM3-2 LM3-3 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 LM3-2 LM3-3 LM3-1 LM3-2 LM3-2 <th co<="" td=""><td>Internitionate, inega - inegar/ystats, inactor - inactor/ystats, inctor - inactor/ystats, indtor - inactor/ystats, indtor-inactor/ystats, indtor-inactor/ystats, indto-inactor/ystats, indto-inacto-inactor/ystats, indto-inac</td><td>Interfined are, integar - integary state, integar - integary state, integar Interfined are, integar - integary state, integar - integary state, integar - integary state, integar - integary state, integary - integary state, integary - integary state, integary - inte</td><td>Internation, integrating interport parts, interport, interport, parts, interp</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th>
LM3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 17/34 18/35 18/35 18/35 19/37 19/38 R C R C R R micro micro micro mega mega 0.02 0.01 0.00 0.02 0.02 13.78 8.43 8.22 12.79 12.76 0.18 0.13 0.14 0.15 0.01 0.02 0.00 0.00 0.00 0.00 0.14 0.01 0.00 0.00 0.00 0.14 0.01 0.00 0.00 0.00 0.14 0.01 0.00 0.00 0.00 0.14 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.000 0.000 0.00 0.00	Indiacy inegative regarity states, inequely states, inegative regarity states, inequely regarity states, inequely regarine regarity states, inequely regarine regarity regarity regarity regarity regarity regarine regarity re
Constant LM3-1 LM3-1 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 LM3-1 LM3-1 LM3-1 LM3-2 LM3-2 LM3-2 LM3-1 LM3-1 LM3-2 LM3-2 LM3-2 R C R C R Micro micro mega mega 40.79 40.38 39.77 39.91 0.01 0.00 0.02 0.02 0.13 0.13 0.14 0.15 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000	Exact - Integraty stats, interior - integraty stats, interior - integration - interior - integration - interior - interi
Early stats, interlo Interlo Interlo LM3-1 LM3-2 LM3-2 LM3-2 LM3-1 LM3-2 LM3-2 LM3-2 I8/36 19/37 19/37 19/38 R C R R micro mega mega mega 40.38 39.77 39.91 0.02 0.00 0.002 0.02 0.02 0.13 0.14 0.15 0.14 0.13 0.14 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.001 0.002 0.00 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001	Eductry Sectory Index or LIM3-1 LM13-1 LM13-2 LM13-2 <thlm3-2< th=""> LM13-2 <thlm3-2< td="" th<=""><td>Bactystats, interior Interior<</td><td>Bart Jonary Index - Index of years, Iso's 19/37 19/38 20/39 20/40 21/41 R C R C R C Anicro mega micro micro mega micro mega 0.000 0.012 0.022 0.02 0.011 0.010 0.001 0.133 0.14 0.15 0.15 0.114 0.17 0.000 0.133 0.14 0.15 0.115 0.119 0.114 0.017 0.133 0.14 0.15 0.010 0.010 0.011 0.000 0.133 0.14 0.15 0.15 0.17 0.36 0.36 0.000 0.001 0.010 0.011 0.010 0.011 0.011 0.143 0.43 0.43 0.36 0.36 0.36 0.36 0.000 0.001 0.010 0.011 0.010 0.011 0.011 0.13 0.143 0.25 <t< td=""><td>gary static - Inductory side, III June - Inductory side, IIII June - IIIII June - IIII June - IIIII June - IIII June - IIII June - IIII June - IIII June - IIIII June - IIII June - IIIIIIIIII June - IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>Bactystats, interfor - interlocitysts, interfor - interlocitysts, interfor - interlocitysts, interfor - interlocitysts, interformed and interval and int</td><td>Eacry starts, intacto - intactoryses, intervo IM3-2 LM3-2 <</td><td>Barty Statis, InterVo - InterVol ystas, InterVo Ethelo - InterVol ystas, InterVol ystas, InterVol ystas, InterVol ystas, InterVol ystas, Isy37 21937 19/37 19/37 20/39 20/40 21/41 21/42 22/43 22/44 23/45 18/36 19/37 19/37 39/91 40.58 39/69 40.26 40.26 40.53 2/44</td><td>Limits the contraction of the contract of</td></t<></td></thlm3-2<></thlm3-2<>
J. Itacto - Itacto - Litacto - Lucito - Local - 23.77 - 39.91 - 0.02 - 0.02 - 0.02 - 0.02 - 0.01 - 0.05 - 0.06 - 0.06 - 0.06 - 0.06 - 0.06 - 0.06 - 0.00 - 0.	
 | J. Inacto - Inactod Pysis, III, M3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 L9/37 19/38 20/39 C R C mega mega micro 39.77 39.91 40.58 0.02 0.02 0.01 12.79 12.76 10.29 0.14 0.15 0.15 0.15 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.15 0.00 0.06 0.06 0.06 0.06 0.06 0.06 0.00 0.01 0.01 0.01 0.01 0.01 0.026 0.01 0.01 0.01 0.02 0.00 0.0990 0.991 0.993 0.001 0.001 0.000 0.266 0.265 0.211 0.003 0.003 0.003 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.00
 | Jinacto - Inacto
 | Structor Indector
 | A. Mactor - Inductor Jysis, Inductor Inductor Jysis, LM3-2 | A. Inderto - Indertocitysis, Interto - Indertocitysis, Inderto - Indertocitysis, IM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 19/37 19/38 20/39 20/40 21/41 21/42 22/43 C R C R C R C <i>mega mega micro micro micro mega mega mega</i> 0.02 0.02 0.01 0.01 0.01 0.01 0.00 12.79 12.76 10.29 13.39 11.41 13.45 7.72 0.14 0.15 0.15 0.19 0.16 0.00 0.00 0.05 0.00 0.01 0.00 0.01 0.01 0.01 0.06 0.03 0.00 0.01 0.00 0.00 0.01 0.014 0.015 0.010 0.001 0.001 0.002 0.00 0.010 <
 | S. Indecto - Indectorysis, Indecto S. Indecto Indeto Indecto Indecto | S. Interfor - Interforuptise, interforment of the sector of the | S. mactor - intactor/pass, muctor introductyses. LM3-2 LM3-2 <thlm3-2< th=""> LM3-2 LM3-2<!--</td--></thlm3-2<> | |
| - Inductor
IP/38
IP/38
R
R
39.91
0.02
0.15
0.15
0.15
0.15
0.01
0.01
0.02
0.00
0.002
0.002
0.002
0.002
0.002
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0000
0.000
0.000
0.000
0.000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000
0.00000000
 | IIII.4.0001 yass, IIII. I.M.3-2 LM.3-2 I.M.3-2 LM.3-2 I.P.38 20/39 R C mega micro 39.91 40.58 0.02 0.01 12.76 10.29 0.15 0.15 0.15 0.43 0.36 0.06 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.025 0.00 0.001 0.000 0.002 0.001 0.0991 0.9933 0.001 0.000 0.265 0.211 0.000
 | Inactodysis, interestination - functional sector interestination interestinatina interestination interestination interestination inter
 | Inductoryses, induce - inductoryses, inductoryses, induce - inductoryses, induce - inductoryses,
 | Inactocrysts, intege - integer sector LM3-2 LM3-2 <thlm3-2< th=""> LM3-2 LM3-2</thlm3-2<> | Imatter of the constraint of the cons
 | Imacrocryses, integer integer of the collocation of the collocating the collocation of the collocation of the collocation of thec | - Indecorpase, indecorpose, indecorpose, indecorpase, indecorpase, indecorpase, indeco | Imatoropyse, much or indication of the form of the for | |
|
 | III (size) III (size) LM3-2 20/39 20 20/39 C 0.01 C 0.01 10.29 0.03 0.15 0.03 0.01 0.03 0.02 0.03 0.036 0.03 0.001 0.00 0.002 0.00 0.003 0.00 0.001 0.00 0.001 0.00 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
 | Image: Number of the system of the
 | Aysts, Intero - Interocrysts. LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 20/39 20/40 21/41 C C R C C micro micro mega 40.58 39.69 40.26 0.01 0.01 0.01 0.01 0.00 10.25 13.39 11.41 0.17 0.36 0.36 0.36 0.36 0.00 0.01 0.01 0.01 0.36 0.36 0.36 0.36 0.00 0.01 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.04 0.01 0.01 100.54 99.67 100.59 0.090 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.00
 | Jysus, Interior - Interocrysus. LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 20/39 20/40 21/41 21/42 C R C R micro micro mega mega 40.58 39.69 40.26 40.20 0.01 0.01 0.01 0.01 0.15 0.19 0.17 0.20 0.15 0.19 0.17 0.20 0.036 0.36 0.19 0.11 0.00 0.01 0.00 0.00 0.16 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.02 0.000 0.001 0.01 0.02 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000
 | Jysts, interior - interocupats. LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 C R C micro micro micro 0.01 0.01 0.01 0.019 0.19 0.19 0.019 0.010 0.010 0.019 0.019 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | Types, interio Interior | Aysos, Indue - Inductysis. LM3-2 LM3-2 <thlm3-2< th=""> LM3-2 LM3-2<</thlm3-2<>
 | Application - Introductions. LM3-2 20/39 20/40 21/41 21/42 22/43 23/45 C R LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 LM3-2 20/39 20/40 21/41 21/42 22/43 23/45 C R R C R C 20/40 21/41 21/42 22/43 23/45 23/46 C R C R 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 <th colspan="</td> | |

TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS

Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

			O T B S	XYG RÊS runa viser	iEN F RAN(a Col ro	UG/ CHO deb	ACIT S IV ella,	Y OI ANI Roj	F TH D LIN gérie	ie a Vieif o Gi	LTO RA I uita	PAI INTI rrari	RAN RUS i Az	AÍB ION: zone	AKI S ≥, Li	MB Jani	ERLI na C	TES Chm [.]	ANI yz, I	D DI Exce	AM Iso	ONC Rub) IN: erti	STA	BILI	ГҮ: Р.				
T MI D1	LMI-BI	31/02	R	mega	40.81	0.02	9.40	0.14	0.43	0.03	0.01	0.02	0.00	49.16	0.14	100.15	0.999	0.000	0.192	0.003	0.009	0.001	0.000	0.000	0.000	1.793	0.007	3.004	0.303	0.697
T MT D1	LMI-BI	31/01	C	mega	40.66	0.00	9.42	0.13	0.39	0.02	0.02	0.03	0.02	50.03	0.00	100.72	0.990	0.000	0.192	0.003	0.008	0.001	0.001	0.001	0.000	1.816	0.000	3.010	1.000	0.000
T MT D1	LMI-B1	30/60	R	mega	40.49	0.01	11.10	0.15	0.40	0.01	0.00	0.02	0.00	48.59	0.00	100.75	0.992	0.000	0.228	0.003	0.008	0.000	0.000	0.000	0.000	1.776	0.000	3.007	1.000	0.000
I MI DI	LMI-BI	90/08	C	mega	40.75	0.00	9.02	0.12	0.35	0.02	0.00	0.00	0.03	50.10	0.00	100.40	0.993	0.000	0.184	0.003	0.007	0.000	0.000	0.000	0.001	1.820	0.000	3.007	0.943	0.057
S. I MI D1	LMI-BI	80/67	Ч	mega	40.39	0.00	10.82	0.16	0.38	0.01	0.00	0.00	0.02	48.51	0.00	100.30	0.993	0.000	0.223	0.003	0.008	0.000	0.000	0.000	0.000	1.779	0.000	3.006	1.000	0.000
nicrocryst	LMI-BI	10/67	C	mega	40.53	0.00	9.68	0.15	0.38	0.01	0.00	0.00	0.01	49.51	0.01	100.29	0.992	0.000	0.198	0.003	0.008	0.000	0.000	0.000	0.000	1.806	0.000	3.008	0.896	0.104
i, micro - I I MI D1	LMI-BI	90/87	К	mega	40.77	0.01	8.15	0.12	0.35	0.00	0.01	0.00	0.00	50.14	0.00	99.55	0.997	0.000	0.167	0.002	0.007	0.000	0.000	0.000	0.000	1.829	0.000	3.003	1.000	0.000
acrocrysts	LMI-BI	CC/87	C	mega	40.50	0.00	8.27	0.11	0.37	0.00	0.04	0.04	0.00	50.83	0.00	100.17	0.987	0.000	0.169	0.002	0.007	0.000	0.001	0.001	0.000	1.846	0.000	3.013	1.000	0.000
macro - m	LMI-BI	2//24	К	mega	39.83	0.02	12.74	0.19	0.31	0.03	0.00	0.00	00.00	47.53	0.00	100.64	0.986	0.001	0.264	0.004	0.006	0.001	0.000	0.000	0.000	1.753	0.000	3.014	1.000	0.000
acrystals,	LMI-BI	50/17	C	mega	40.33	0.00	11.93	0.18	0.33	0.00	0.01	0.04	0.00	48.03	0.00	100.85	0.991	0.000	0.245	0.004	0.007	0.000	0.000	0.001	0.000	1.760	0.000	3.008	0.961	0.039
ega - meg	LIM13-2	70/97	Ч	macro	38.81	0.00	16.56	0.22	0.28	0.04	0.02	0.02	0.05	44.11	0.01	100.14	0.984	0.000	0.351	0.005	0.006	0.001	0.001	0.000	0.001	1.667	0.000	3.016	0.17	0.83
	LIM13-2	10/97	C	macro	39.38	0.00	16.60	0.24	0.27	0.03	0.02	00.00	00.00	43.94	0.00	100.47	0.993	0.000	0.350	0.005	0.005	0.001	0.001	0.000	0.000	1.652	0.000	3.007	0.17	0.83
	LM3-2	00/07	Ч	micro	39.88	0.00	12.75	0.20	0.22	0.07	0.04	0.00	0.03	46.70	0.01	96.66	0.994	0.000	0.266	0.004	0.004	0.002	0.001	0.000	0.001	1.735	0.000	3.007	0.13	0.87
(- 1111; 1 1 M12 7	LM3-2	64/07	C	micro	40.65	0.00	9.66	0.14	0.37	0.03	0.01	0.00	0.00	49.80	0.01	100.67	0.991	0.000	0.197	0.003	0.007	0.001	0.000	0.000	0.000	1.810	0.000	3.009	0.10	0.90
- core; h	LM3-2	24/48	Я	macro	39.07	0.00	12.89	0.19	0.23	0.41	0.00	0.03	0.00	47.50	0.00	100.32	0.973	0.000	0.269	0.004	0.005	0.011	0.000	0.001	0.000	1.764	0.000	3.026	0.13	0.87
Comula	Sample	Urain/Analysis	Location	Crystal type	SiO_2	Al_2O_3	FeO	MnO	NiO	CaO	K_2O	TiO_2	Cr_2O_3	MgO	Na_2O	Total:	Si	Al	Fe	Mn	Ni	Са	K	Τi	Cr	Mg	Na	Cations:	Fayalite	Forsterite

DOI: 10.1590/2317-4889202020190087

	ent concei - rim· I - i	ntration of ntermedia	olivine fro	om all sam megacryst	iples. Struc 'als macro	ctural form - macrocr	ula calcula vsts micro	ated on th o - micro	ne basis crysts	of 4 ox	vgens .					
LMI-C1 LMI-C1	LMI-CI	* I	w, musu LMI-CI	LMI-C2	LMI-C2	LMI-C2	LMI-C2	TR-4	TR-4	TR-4	TR-4	TR-4	TR-4	TR-4	TR-4	
33/66 34/67	34/67		34/68	36/71	36/72	37/73	37/74	01/01	01/02	02/03	02/04	03/05	03/06	04/07	04/08	05/09
R C	C		R	C	Ч	С	R	C	Я	C	Я	C	R	C	R	C
mega mega	mega	1	mega	mega	mega	mega	mega	mega	mega	micro	micro	macro	macro	micro	micro	micro
39.55 40.40	40.40		40.22	40.54	39.55	40.16	41.26	41.04	40.75	41.38	41.63	40.86	39.97	40.48	41.10	39.29
0.00 0.01	0.01		0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.00	0.01	0.04
11.26 11.55	11.55		11.30	8.98	9.22	12.40	12.83	8.06	7.89	8.19	8.03	8.02	8.03	8.46	8.63	13.53
0.20 0.18	0.18		0.18	0.14	0.16	0.16	0.17	0.12	0.09	0.08	0.09	0.11	0.09	0.11	0.11	0.14
0.40 0.34	0.34		0.33	0.38	0.37	0.36	0.35	0.35	0.37	0.38	0.39	0.36	0.39	0.42	0.40	0.38
0.01 0.02	0.02		0.01	0.02	0.03	0.03	0.04	0.00	0.00	0.03	0.04	0.00	0.04	0.03	0.02	0.07
0.01 0.01	0.01		0.00	0.00	0.00	0.01	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
0.00 0.00	0.00		0.00	0.01	0.03	0.03	0.01	0.00	0.00	0.00	0.00	0.05	0.04	0.00	0.00	0.00
0.00 0.05	0.05		0.03	0.00	0.01	0.03	0.04	0.02	0.01	0.03	0.00	0.00	0.00	0.03	0.01	0.02
49.38 48.36	48.36		49.29	49.63	50.82	47.00	45.06	50.38	50.39	49.64	48.70	50.25	51.58	49.74	49.46	46.19
0.02 0.01	0.01		0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.02
100.84 100.93	100.93	~	101.36	99.72	100.20	100.17	77.66	100.00	99.50	99.74	98.89	99.65	100.13	99.26	99.75	99.67
0.973 0.991	0.991		0.982	0.994	0.970	0.996	1.025	0.999	0.996	1.009	1.021	0.998	0.975	0.995	1.005	0.986
0.000 0.000	0.000	_	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
0.232 0.237	0.237	_	0.231	0.184	0.189	0.257	0.267	0.164	0.161	0.167	0.165	0.164	0.164	0.174	0.176	0.284
0.004 0.002	0.00	—	0.004	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003
0.008 0.007	0.00	~	0.006	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.008	0.007	0.008	0.008	0.008	0.008
0.00 0.00	0.00	_	0.000	0.001	0.001	0.001	0.001	0.000	0.000	0.001	0.001	0.000	0.001	0.001	0.001	0.002
0.00 0.000	0.00		0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.00 0.00	0.00	0	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.000
0.00 0.00	0.00	-	0.001	0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000
1.810 1.76	1.76	8	1.794	1.815	1.858	1.738	1.669	1.828	1.837	1.804	1.781	1.829	1.875	1.823	1.803	1.728
0.001 0.00	0.00	0	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
3.028 3.00	3.00	6	3.018	3.005	3.030	3.003	2.975	3.001	3.004	2.991	2.978	3.001	3.025	3.004	2.995	3.014
0.818 0.933	0.933	~	0.932	1.000	0.843	0.948	0.873	0.08	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.14
0.182 0.067	0.067		0.068	0.000	0.157	0.052	0.127	0.92	0.92	0.92	0.92	0.92	0.92	0.91	0.91	0.86

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P.

Svisero

TABELA B2 - Major element concentration of olivine from all samples. Structural formula calculated on the basis of 4 oxygens

	TR4-1	14/27	C	micro	39.62	0.00	12.75	0.19	0.27	0.02	0.01	0.01	0.01	46.49	0.02	99.38	0.993	0.000	0.267	0.004	0.005	0.000	0.000	0.000	0.000	1.736	0.001	3.008	0.13	0.87
	TR4-1	13/26	К	mega	40.42	0.01	8.29	0.11	0.39	0.04	0.00	0.00	0.03	49.71	0.01	99.01	0.996	0.000	0.171	0.002	0.008	0.001	0.000	0.000	0.001	1.825	0.000	3.004	0.09	0.91
	TR4-1	13/25	C	mega	40.34	0.00	7.96	0.09	0.37	0.03	0.02	0.02	0.03	50.59	0.02	99.48	0.988	0.000	0.163	0.002	0.007	0.001	0.001	0.000	0.001	1.848	0.001	3.012	0.08	0.92
	TR4-1	12/24	R	mega	39.82	0.00	11.24	0.18	0.34	0.04	0.00	0.04	0.02	47.36	0.01	90.06	0.994	0.000	0.235	0.004	0.007	0.001	0.000	0.001	0.000	1.763	0.001	3.005	0.12	0.88
	TR4-1	12/23	C	mega	40.72	0.00	7.68	0.12	0.43	0.00	0.00	0.00	0.01	50.46	0.02	99.44	0.996	0.000	0.157	0.003	0.008	0.000	0.000	0.000	0.000	1.840	0.001	3.004	0.08	0.92
	TR4-1	11/22	Я	mega	40.01	0.01	9.11	0.12	0.32	0.01	0.00	0.06	0.01	49.54	0.00	91.00	0.988	0.000	0.188	0.003	0.006	0.000	0.000	0.001	0.000	1.824	0.000	3.011	0.09	0.91
ocrysts.	TR4-1	11/21	C	mega	40.16	0.00	8.85	0.14	0.33	0.00	0.02	0.04	0.04	49.46	0.00	99.03	0.992	0.000	0.183	0.003	0.007	0.000	0.001	0.001	0.001	1.821	0.000	3.007	0.09	0.91
ro - micr	TR-4	10/20	Ч	macro	41.40	0.00	8.16	0.11	0.41	0.01	0.00	0.03	0.02	49.75	0.01	99.92	1.008	0.000	0.166	0.002	0.008	0.000	0.000	0.001	0.000	1.805	0.000	2.992	0.08	0.92
sts, mic	TR-4	10/19	C	macro	40.70	0.00	8.38	0.12	0.39	0.00	0.01	0.00	0.03	49.96	0.01	99.61	0.997	0.000	0.172	0.002	0.008	0.000	0.000	0.000	0.001	1.824	0.000	3.003	0.09	0.91
nacrocry	TR-4	09/18	Я	macro	41.43	0.02	8.36	0.10	0.39	0.01	0.01	0.00	0.00	48.63	0.02	98.99	1.018	0.000	0.172	0.002	0.008	0.000	0.000	0.000	0.000	1.781	0.001	2.983	0.09	0.91
nacro - n	TR-4	09/17	C	macro	41.13	0.01	8.60	0.09	0.42	0.02	0.03	0.03	0.03	49.65	0.01	100.01	1.003	0.000	0.175	0.002	0.008	0.001	0.001	0.001	0.001	1.805	0.000	2.997	0.09	0.91
rystals, 1	TR-4	08/16	C	mega	40.74	0.00	9.36	0.13	0.39	0.07	0.01	0.00	0.02	49.29	0.01	100.02	0.998	0.000	0.192	0.003	0.008	0.002	0.000	0.000	0.000	1.800	0.000	3.002	0.10	0.90
- megacı	TR-4	08/15	Ч	mega	40.68	0.01	9.41	0.14	0.37	0.08	0.00	0.06	0.03	48.72	0.01	99.53	1.001	0.000	0.194	0.003	0.007	0.002	0.000	0.001	0.001	1.787	0.000	2.997	0.10	0.90
; mega	TR-4	07/14	К	mega	41.16	0.01	8.38	0.11	0.40	0.02	0.00	0.00	0.00	48.88	0.00	98.97	1.012	0.000	0.172	0.002	0.008	0.000	0.000	0.000	0.000	1.792	0.000	2.988	0.09	0.91
mediate	TR-4	07/13	C	mega	41.03	0.01	8.38	0.11	0.39	0.01	0.01	0.00	0.01	49.82	0.00	99.78	1.002	0.000	0.171	0.002	0.008	0.000	0.000	0.000	0.000	1.814	0.000	2.998	0.09	0.91
I - inter	TR-4	06/12	К	micro	42.15	0.01	8.10	0.11	0.39	0.01	0.01	0.01	0.00	49.27	0.00	100.05	1.022	0.000	0.164	0.002	0.008	0.000	0.000	0.000	0.000	1.781	0.000	2.978	0.08	0.92
R - rim;	TR-4	06/11	C	micro	41.21	0.01	8.11	0.11	0.41	0.03	0.00	0.00	0.04	49.97	0.00	99.88	1.004	0.000	0.165	0.002	0.008	0.001	0.000	0.000	0.001	1.814	0.000	2.996	0.08	0.92
- core;	TR-4	05/10	Ч	micro	40.18	0.02	13.47	0.13	0.38	0.08	0.00	0.04	0.02	45.40	0.04	99.78	1.005	0.001	0.282	0.003	0.008	0.002	0.000	0.001	0.000	1.692	0.002	2.995	0.14	0.86
C	Sample	Grain/Analysis	Location	Crystal type	SiO_2	$\mathrm{Al}_2\mathrm{O}_3$	FeO	MnO	NiO	CaO	$ m K_2O$	TiO_2	Cr_2O_3	MgO	Na_2O	Total:	Si	AI	Fe	Mn	Ni	Ca	K	Τi	Cr	Mg	Na	Cations:	Fayalite	Forsterite

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P.

Β	
eria	
Mat	
tary	
men	
pple	

- microcrysts.
micro
- macrocrysts,
macro
megacrystals,
mega -
intermediate;
<u> </u>
- rim;
Ч
C - core;

						S	Brun Svise	a C ero	olde	bell	a, R	logé	rio	Gui	tarra	ari A	\zzo	ne,	Lua	nna	Chi	nyz,	, Ex	cels	οRι	lber	ti, I	Darc	у P.	,
	TR4-2	23/45	C	micro	40.87	0.01	8.32	0.09	0.36	0.00	0.01	0.00	0.01	50.87	0.01	100.54	1.007	0.000	0.172	0.003	0.007	0.000	0.000	0.000	0.000	1.803	0.000	2.992	0.09	0.91
	TR4-2	22/44	R	macro	40.57	0.01	7.87	0.10	0.40	0.04	0.00	0.01	0.02	52.00	0.02	101.05	0.991	0.000	0.169	0.002	0.007	0.000	0.000	0.000	0.000	1.839	0.000	3.009	0.08	0.92
	TR4-2	22/43	C	macro	41.07	0.00	7.93	0.10	0.43	0.03	0.00	0.00	0.01	51.18	0.01	100.75	0.979	0.000	0.159	0.002	0.008	0.001	0.000	0.000	0.000	1.870	0.001	3.021	0.08	0.92
	TR4-2	21/42	К	macro	39.40	0.00	11.11	0.14	0.42	0.01	0.00	0.04	0.02	49.01	0.01	100.14	0.992	0.000	0.160	0.002	0.008	0.001	0.000	0.000	0.000	1.843	0.000	3.008	0.08	0.92
	TR4-2	21/41	C	macro	40.03	0.01	11.63	0.13	0.40	0.01	0.00	0.03	0.01	48.47	0.00	100.71	0.975	0.000	0.230	0.003	0.008	0.000	0.000	0.001	0.000	1.807	0.000	3.025	0.11	0.89
	TR4-2	20/40	R	mega	41.49	0.01	8.11	0.13	0.42	0.03	0.01	0.03	0.00	50.40	0.00	100.63	0.985	0.000	0.239	0.003	0.008	0.000	0.000	0.000	0.000	1.778	0.000	3.014	0.12	0.88
	TR4-2	20/39	C	mega	40.84	0.00	8.22	0.10	0.39	0.00	0.00	0.01	0.00	51.28	0.01	100.84	1.003	0.000	0.164	0.003	0.008	0.001	0.000	0.000	0.000	1.816	0.000	2.996	0.08	0.92
	TR4-2	19/38	R	mega	40.53	0.00	7.71	0.11	0.42	0.04	0.00	0.00	0.00	51.91	0.00	100.71	0.980	0.000	0.156	0.002	0.008	0.001	0.000	0.000	0.000	1.872	0.000	3.020	0.08	0.92
	TR4-2	19/37	C	mega	41.06	0.01	7.79	0.09	0.42	0.00	0.00	0.02	0.01	51.34	0.01	100.74	0.992	0.000	0.157	0.002	0.008	0.000	0.000	0.000	0.000	1.848	0.000	3.008	0.08	0.92
1001 y 213,	TR4-1	18/36	R	macro	39.94	0.01	9.76	0.16	0.36	0.02	0.00	0.00	0.02	49.17	0.01	99.46	0.987	0.000	0.202	0.003	0.007	0.001	0.000	0.000	0.000	1.811	0.001	3.013	0.10	0.90
	TR4-1	18/35	C	macro	40.17	0.04	8.96	0.12	0.36	0.01	0.00	0.00	0.00	49.41	0.01	70.66	0.992	0.001	0.185	0.003	0.007	0.000	0.000	0.000	0.000	1.819	0.000	3.008	0.09	0.91
uus, 111uv	TR4-1	17/34	Ч	micro	39.70	0.01	12.18	0.18	0.34	0.08	0.01	0.03	0.08	46.73	0.04	99.39	0.993	0.000	0.255	0.004	0.007	0.002	0.000	0.001	0.002	1.742	0.002	3.007	0.13	0.87
105401 y 3	TR4-1	17/33	C	micro	40.11	0.00	10.44	0.16	0.36	0.02	0.00	0.00	0.06	47.65	0.00	98.80	1.000	0.000	0.218	0.003	0.007	0.000	0.000	0.000	0.001	1.770	0.000	3.000	0.11	0.89
mcon m	TR4-1	16/32	R	micro	40.53	0.01	8.48	0.11	0.38	0.06	0.01	0.00	0.03	49.80	0.00	99.42	0.995	0.000	0.174	0.002	0.008	0.002	0.000	0.000	0.000	1.823	0.000	3.005	0.09	0.91
uvuluw, '	TR4-1	16/31	C	micro	40.29	0.02	8.41	0.12	0.36	0.01	0.02	0.04	0.00	50.12	0.00	99.38	0.990	0.001	0.173	0.003	0.007	0.000	0.000	0.001	0.000	1.835	0.000	3.010	0.09	0.91
	TR4-1	15/30	Я	macro	40.45	0.00	8.24	0.12	0.37	0.02	0.00	0.01	0.02	50.16	0.00	99.39	0.993	0.000	0.169	0.002	0.007	0.001	0.000	0.000	0.000	1.835	0.000	3.007	0.08	0.92
· · · · · · · · · · · · · · · · · · ·	TR4-1	15/29	C	macro	40.81	0.00	8.24	0.08	0.38	0.03	0.00	0.00	0.02	50.07	0.00	99.64	0.998	0.000	0.168	0.002	0.008	0.001	0.000	0.000	0.000	1.825	0.000	3.002	0.08	0.92
, 202 ,	TR4-1	14/28	К	micro	39.50	0.01	12.98	0.20	0.28	0.03	0.02	0.00	0.00	46.80	0.01	99.83	0.987	0.000	0.271	0.004	0.006	0.001	0.001	0.000	0.000	1.743	0.001	3.013	0.13	0.87
	Sample	Grain/Analysis	Location	Crystal type	SiO_2	Al_2O_3	FeO	MnO	NiO	CaO	$ m K_2O$	TiO_2	Cr_2O_3	MgO	Na_2O	Total:	Si	AI	Fe	Mn	Ni	Ca	K	Τi	Cr	Mg	Na	Cations:	Fayalite	Forsterite

DOI: 10.1590/2317-4889202020190087

OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS

J	C - core; l	R - rim; I	- interm	ediate; m	ega - meg	acrystals.	, macro -	macrocry	sts, micrc	- microc	rysts.				
Sample	TR4-2	TR4-2	TR4-2	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3
Grain/Analysis	23/46	24/47	24/48	25/49	25/50	26/51	26/52	27/53	27/54	28/55	28/56	29/57	29/58	30/59	30/60
Location	Ч	C	Ч	C	R	C	R	C	R	C	Ч	C	R	C	R
Crystal type	micro	micro	micro	mega	mega	mega	mega	mega	mega	mega	mega	mega	mega	mega	mega
SiO_2	41.46	40.85	41.84	40.79	40.41	40.77	41.39	40.80	40.77	40.96	41.64	39.25	39.33	40.61	41.24
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.03	0.03	0.01	0.00
FeO	8.46	8.45	8.35	9.26	8.91	8.88	8.86	11.06	11.20	8.49	8.68	15.73	15.64	8.57	8.36
MnO	0.13	0.09	0.12	0.13	0.09	0.10	0.11	0.18	0.22	0.12	0.09	0.17	0.15	0.13	0.10
NiO	0.37	0.43	0.39	0.39	0.38	0.39	0.36	0.31	0.35	0.40	0.36	0.36	0.36	0.42	0.40
CaO	0.01	0.02	0.08	0.01	0.02	0.01	0.03	0.03	0.03	0.01	0.01	0.07	0.06	0.00	0.03
$ m K_2O$	0.00	0.01	0.00	0.02	0.01	0.01	0.00	0.00	0.02	0.01	0.03	0.01	0.00	00.00	0.00
TiO_2	0.01	0.01	0.05	0.00	0.00	0.06	0.02	0.02	0.04	0.03	0.03	0.04	0.05	0.02	0.00
Cr_2O_3	0.02	0.00	0.00	0.02	0.00	0.01	0.02	0.03	00.00	0.05	0.03	0.04	0.03	0.06	00.00
MgO	49.78	50.93	48.60	49.88	49.86	50.15	49.75	48.32	47.99	50.28	49.26	44.63	45.15	50.29	49.94
Na_2O	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.03	0.03	0.00	0.00
Total:	100.24	100.79	99.42	100.51	99.70	100.38	100.55	100.75	100.64	100.37	100.12	100.35	100.82	100.09	100.07
Si	0.989	1.022	0.987	0.994	0.991	0.993	1.004	0.999	1.000	0.996	1.013	0.988	0.985	0.991	1.004
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000
Fe	0.171	0.171	0.182	0.189	0.183	0.181	0.180	0.226	0.230	0.173	0.177	0.331	0.328	0.175	0.170
Mn	0.002	0.002	0.003	0.003	0.002	0.002	0.002	0.004	0.005	0.003	0.002	0.004	0.003	0.003	0.002
Ni	0.008	0.008	0.000	0.008	0.008	0.008	0.007	0.006	0.007	0.008	0.007	0.007	0.007	0.008	0.008
Ca	0.001	0.002	0.000	0.000	0.001	0.000	0.001	0.001	0.001	0.000	0.000	0.002	0.002	0.000	0.001
K	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Τi	0.000	0.001	0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.000	0.000
Cr	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.000
Mg	1.839	1.770	1.830	1.812	1.824	1.821	1.800	1.764	1.755	1.822	1.786	1.675	1.686	1.830	1.812
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.002	0.000	0.000
Cations:	3.011	2.977	3.009	3.006	3.009	3.006	2.995	3.001	2.999	3.003	2.987	3.011	3.014	3.008	2.996
Fayalite	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.11	0.12	0.09	0.09	0.17	0.16	0.09	0.09
Forsterite	0.91	0.91	0 91	0 91	0.91	0.91	0.91	0.89	0.88	0.91	0 91	0.83	0.84	0.91	0.91

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS

Svisero

Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P.

						S۱	/iser	0																			
TR-07 06/11 C	mega	39.91	0.01	8.64	0.10	0.00	0.02	0.00	0.03	0.36	50.23	0.00	99.31	0.987	0.000	0.176	0.002	0.000	0.001	0.000	0.000	0.006	1.836	0.000	3.010	0.09	0.91
TR-07 05/10 R	mega	40.02	0.00	8.29	0.07	0.05	0.03	0.01	0.00	0.39	50.89	0.00	99.74	0.982	0.000	0.178	0.002	0.000	0.001	0.000	0.001	0.007	1.843	0.000	3.014	0.09	0.91
TR-07 05/09 C	mega	40.69	0.00	8.22	0.11	0.00	0.01	0.01	0.05	0.38	50.66	0.00	100.13	0.980	0.000	0.170	0.001	0.001	0.001	0.000	0.000	0.008	1.857	0.000	3.017	0.08	0.92
TR-04B 04/08 R	mega	40.92	0.00	8.26	0.16	0.00	0.00	0.01	0.03	0.37	50.92	0.01	100.68	0.990	0.000	0.167	0.002	0.000	0.000	0.000	0.001	0.007	1.837	0.000	3.006	0.08	0.92
TR-04B 04/07 C	mega	40.77	0.01	8.47	0.09	0.03	0.00	0.00	0.00	0.37	50.94	0.01	100.70	0.990	0.000	0.167	0.003	0.000	0.000	0.000	0.000	0.007	1.837	0.000	3.006	0.08	0.92
TR-04A 03/06 R	mega	39.56	0.00	8.26	0.03	0.01	0.01	0.00	0.00	0.38	50.10	0.00	98.36	0.988	0.000	0.172	0.002	0.001	0.000	0.000	0.000	0.007	1.839	0.001	3.009	0.09	0.91
TR-04A 03/05 C	mega	40.44	0.00	8.33	0.09	0.00	0.01	0.01	0.00	0.34	50.36	0.00	99.57	0.982	0.000	0.171	0.001	0.000	0.000	0.000	0.000	0.007	1.853	0.000	3.015	0.08	0.92
TR-04A 02/04 R	mega	40.13	0.02	7.74	0.11	0.01	0.02	0.01	0.02	0.38	51.87	0.00	100.29	0.990	0.000	0.171	0.002	0.000	0.000	0.000	0.000	0.007	1.838	0.000	3.007	0.08	0.92
TR-04A 02/03 C	mega	40.48	0.01	7.62	0.11	0.00	0.01	0.01	0.00	0.39	50.64	0.01	99.28	0.975	0.001	0.157	0.002	0.000	0.001	0.000	0.000	0.007	1.878	0.000	3.021	0.08	0.92
TR-03 01/02 R	mega	39.05	0.00	9.12	0.16	0.02	0.03	0.01	0.00	0.30	49.94	0.01	98.63	0.991	0.000	0.156	0.002	0.000	0.000	0.000	0.000	0.008	1.848	0.000	3.006	0.08	0.92
TR-03 01/01 C	mega	40.64	0.00	8.94	0.14	0.02	0.01	0.00	0.05	0.32	50.54	0.01	100.66	0.972	0.000	0.190	0.003	0.000	0.001	0.000	0.000	0.006	1.853	0.000	3.025	0.09	0.91
TRIV-5-3 32/64 R	mega	40.15	0.00	9.88	0.11	0.39	0.04	0.03	0.01	0.01	50.13	0.00	100.76	0.981	0.000	0.202	0.002	0.008	0.001	0.001	0.000	0.000	1.825	0.000	3.020	0.10	0.90
TRIV-5-3 32/63 C	mega	40.75	0.00	9.77	0.09	0.42	0.02	0.00	0.00	0.00	49.39	0.00	100.44	0.996	0.000	0.200	0.002	0.008	0.000	0.000	0.000	0.000	1.799	0.000	3.004	0.10	0.90
TRIV-5-3 31/62 R	mega	40.86	0.02	8.75	0.09	0.38	0.01	0.02	0.03	0.00	49.95	0.00	100.11	766.0	0.001	0.178	0.002	0.007	0.000	0.001	0.001	0.000	1.816	0.000	3.003	0.09	0.91
TRIV-5-3 31/61 C	mega	40.87	0.00	8.91	0.10	0.40	0.02	0.00	0.03	0.02	49.92	0.01	100.28	0.996	0.000	0.182	0.002	0.008	0.001	0.000	0.000	0.000	1.814	0.001	3.004	0.09	0.91
Sample Grain/Analysis Location	Crystal type	SiO_2	Al_2O_3	FeO	MnO	NiO	CaO	$ m K_2O$	TiO_2	Cr_2O_3	MgO	Na_2O	Total:	Si	AI	Fe	Mn	Ż	Ca	K	Ti	Cr	Mg	Na	Cations:	Fayalite	Forsterite

÷ . H . ۴ Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P.

nicrocrysts.	
ts, micro - 1	
macrocrys	
, macro -	
megacrystals	
mega -	
termediate;	
I - in	
rim;	
. R -	
- core	
C	

TR-07 07/14 R	macro	39.91	0.00	8.90	0.10	0.00	0.03	0.00	0.00	0.37	50.30	0.00	99.61	0.966	0.000	0.156	0.003	0.001	0.000	0.000	0.000	0.007	1.897	0.000	3.030	0.08	0.92
TR-07 07/13 C	macro	40.49	0.00	8.58	0.07	0.04	0.01	0.00	0.03	0.40	49.95	0.02	99.59	0.981	0.000	0.183	0.002	0.000	0.001	0.000	0.000	0.007	1.842	0.000	3.016	0.09	0.91
TR-07 06/12 R	macro	40.49	0.01	7.79	0.09	0.00	0.02	0.02	0.00	0.41	49.74	0.00	98.56	0.992	0.000	0.176	0.001	0.001	0.000	0.000	0.001	0.008	1.824	0.001	3.004	0.09	0.91
TR-07 06/11 C	macro	40.51	0.00	7.72	0.11	0.03	0.01	0.01	0.01	0.40	51.10	0.00	99.90	0.998	0.000	0.161	0.002	0.000	0.001	0.001	0.000	0.008	1.828	0.000	2.998	0.08	0.92
TR-04B 05/10 R	macro	41.14	0.00	7.45	0.12	0.05	0.02	0.01	0.02	0.38	51.50	0.02	100.71	0.987	0.000	0.157	0.002	0.001	0.000	0.000	0.000	0.008	1.855	0.000	3.010	0.08	0.92
TR-04B 05/09 C	macro	41.23	0.01	7.61	0.07	0.00	0.01	0.02	0.00	0.35	52.00	0.02	101.32	0.992	0.000	0.150	0.002	0.001	0.000	0.000	0.000	0.007	1.851	0.001	3.005	0.08	0.92
TR-04B 04/08 R	macro	40.83	0.01	8.01	0.12	0.03	0.03	0.00	0.01	0.35	50.56	0.01	99.95	0.988	0.000	0.153	0.001	0.000	0.000	0.001	0.000	0.007	1.858	0.001	3.009	0.08	0.92
TR-04B 04/07 C	macro	40.91	0.00	7.77	0.10	0.00	0.01	0.00	0.02	0.36	51.37	0.01	100.56	0.994	0.000	0.163	0.003	0.001	0.001	0.000	0.000	0.007	1.834	0.000	3.003	0.08	0.92
TR-04A 03/06 R	macro	40.06	0.00	8.37	0.10	0.00	0.06	0.00	0.00	0.40	51.03	0.00	100.02	0.989	0.000	0.157	0.002	0.000	0.000	0.000	0.000	0.007	1.851	0.000	3.007	0.08	0.92
TR-04A 03/05 C	macro	40.49	0.00	8.46	0.11	0.04	0.01	0.00	0.01	0.37	50.74	0.00	100.24	0.978	0.000	0.171	0.002	0.000	0.002	0.000	0.000	0.008	1.857	0.000	3.018	0.08	0.92
TR-04A 02/04 R	macro	40.52	0.00	8.45	0.09	0.03	0.02	0.02	0.00	0.39	51.04	0.01	100.56	0.986	0.000	0.172	0.002	0.001	0.000	0.000	0.000	0.007	1.841	0.000	3.010	0.09	0.91
TR-04A 02/03 C	macro	40.81	0.00	8.44	0.11	0.02	0.00	0.00	0.00	0.38	50.95	0.00	100.70	0.984	0.000	0.171	0.002	0.001	0.000	0.001	0.000	0.007	1.847	0.000	3.013	0.08	0.92
TR-03 01/02 R	macro	43.07	0.03	7.76	0.11	0.00	0.04	0.02	0.01	0.45	48.21	0.01	99.71	0.988	0.000	0.171	0.002	0.000	0.000	0.000	0.000	0.007	1.839	0.000	3.008	0.09	0.91
TR-03 01/01 C	macro	39.89	0.00	7.95	0.06	0.00	0.00	0.00	0.00	0.36	51.56	0.01	99.82	1.042	0.001	0.157	0.002	0.000	0.001	0.001	0.000	0.009	1.739	0.001	2.953	0.08	0.92
TR-07 06/13 R	mega	40.10	0.00	8.35	0.13	0.00	0.06	0.00	0.03	0.40	49.97	0.03	99.07	0.974	0.000	0.162	0.001	0.000	0.000	0.000	0.000	0.007	1.877	0.000	3.022	0.08	0.92
TR-07 06/12 I	mega	40.27	0.00	8.60	0.12	0.01	0.03	0.01	0.01	0.33	50.24	0.00	99.62	0.988	0.000	0.172	0.003	0.000	0.002	0.000	0.001	0.008	1.835	0.001	3.008	0.09	0.91
Sample Grain/Analysis Location	Crystal type	SiO_2	Al_2O_3	FeO	MnO	NiO	CaO	$\rm K_2O$	TiO_2	Cr_2O_3	MgO	Na_2O	Total:	Si	AI	Fe	Mn	Ni	Ca	K	Ti	Cr	Mg	Na	Cations:	Fayalite	Forsterite

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P.

C	- core; H	R - rim; I -	intermedia	ate; mega	- megacry	stals, macı	o - macro	crysts, mie	cro - micr	ocrysts.		
Sample n/Analysis	TR-02 01/01	TR-04A 02/02	TR-04A 02/03	TR-04A 03/04	TR-04A 04/05	TR-04A 05/06	TR-04A 06/07	TR-04B 07/08	TR-04B 07/09	TR-04B 08/10	TR-04B 09/11	TR-07 12/15
ocation	C	C	Я	C	C	C	C	C	R	C	C	C
ystal type	micro	micro	micro	micro	micro	micro	micro	micro	micro	micro	micro	micro
SiO_2	39.52	40.71	40.96	40.52	40.13	40.48	40.38	40.68	41.08	40.83	40.18	40.13
Al_2O_3	0.00	0.01	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.01	0.02	0.01
FeO	7.65	7.81	9.68	7.66	8.38	9.43	8.72	8.56	10.28	7.85	12.29	10.55
MnO	0.12	0.10	0.17	0.10	0.13	0.14	0.09	0.13	0.16	0.09	0.15	0.16
NiO	0.04	0.00	0.03	0.07	0.00	0.02	0.00	0.01	0.01	0.00	0.09	0.01
CaO	0.01	0.01	0.04	00.00	0.03	0.03	0.01	0.01	0.05	0.01	0.12	0.08
$\rm K_2O$	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.02	0.00
TiO_2	0.00	0.02	0.02	0.02	0.01	0.00	0.01	0.00	0.02	0.02	0.07	0.03
Cr_2O_3	0.35	0.37	0.35	0.37	0.34	0.41	0.39	0.39	0.37	0.45	0.36	0.30
MgO	52.06	50.75	49.14	51.12	50.30	49.36	49.87	50.30	48.58	51.65	46.68	48.51
Na_2O	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.02	0.00	0.04	0.00
Total:	99.76	99.79	100.40	99.89	99.34	99.87	99.47	100.12	100.56	100.91	100.02	77.66
Si	0.992	0.999	0.987	0.986	0.993	0.991	0.991	1.003	0.985	0.997	0.972	1.025
AI	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Fe	0.159	0.197	0.156	0.172	0.193	0.179	0.174	0.210	0.158	0.255	0.174	0.208
Mn	0.002	0.004	0.002	0.003	0.003	0.002	0.003	0.003	0.002	0.003	0.002	0.003
Ni	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.001
Са	0.000	0.001	0.000	0.001	0.001	0.000	0.000	0.001	0.000	0.003	0.001	0.001
К	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Τi	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001
Cr	0.007	0.007	0.007	0.007	0.008	0.007	0.008	0.007	0.009	0.007	0.008	0.006
Mg	1.843	1.788	1.855	1.842	1.805	1.825	1.827	1.768	1.857	1.727	1.865	1.727
Na	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.001	0.000	0.002	0.000	0.000
Cations:	3.004	2.997	3.009	3.011	3.003	3.005	3.005	2.994	3.011	2.999	3.023	2.972
Fayalite	0.08	0.10	0.08	0.09	0.10	0.09	0.09	0.11	0.08	0.13	0.09	0.11
orsterite	0.92	06.0	0.92	0.91	0.90	0.91	0.91	0.89	0.92	0.87	0.91	0.89

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

В
rial
ate
Σ
ary
ent
em
ppl
Suj

TABLE B3. Major element concentration of monticellite from all samples. Structural formula calculated on the basis of 4 oxigens. C - core; R - rim; I - intermediate

LM-2 17/20 C	$\begin{array}{c} 36.18\\ 0.00\\ 12.37\\ 0.72\\ 0.01\\ 32.93\\ 0.00\\ 0.03\\ 0.05\\ 17.82\\ 0.04\end{array}$	100.16	$\begin{array}{c} 0.996\\ 0.000\\ 0.285\\ 0.017\\ 0.000\\ 0.971\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.002\end{array}$	3.004	71.96 0.12 0.09 -4.23
LM-2 16/19 C	37.15 0.09 3.27 0.25 0.06 3.4.55 0.05 0.16 0.16 0.06 24.50 0.08	100.21	$\begin{array}{c} 0.981\\ 0.003\\ 0.072\\ 0.006\\ 0.001\\ 0.978\\ 0.002\\ 0.003\\ 0.001\\ 0.065\\ 0.004\end{array}$	3.016	93.03 0.12 0.02 2.19
LM-2 15/18 C	$\begin{array}{c} 37.66\\ 0.03\\ 0.03\\ 4.44\\ 0.41\\ 0.04\\ 0.04\\ 0.05\\ 0.05\\ 0.05\\ 0.03\\ 0.03\end{array}$	100.74	$\begin{array}{c} 0.993\\ 0.001\\ 0.009\\ 0.009\\ 0.001\\ 0.973\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001 \end{array}$	3.005	90.42 0.12 0.03 1.24
LM-2 14/17 C	36.67 0.11 2.97 0.32 0.32 0.13 0.14 0.14 0.04 0.04	99.46	$\begin{array}{c} 0.977\\ 0.004\\ 0.006\\ 0.007\\ 0.000\\ 0.989\\ 0.003\\ 0.003\\ 0.001\\ 0.003\\ 0.003\\ 0.003 \end{array}$	3.022	93.60 0.12 0.02 2.47
LM-2 13/16 C	$\begin{array}{c} 37.22\\ 0.04\\ 3.88\\ 0.26\\ 0.05\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.26\\ 0.03\\ 0.03\\ 0.03\\ 0.02\\ 0.02\\ 0.02\end{array}$	99.81	$\begin{array}{c} 0.989\\ 0.001\\ 0.086\\ 0.006\\ 0.001\\ 0.005\\ 0.005\\ 0.005\\ 0.038\\ 0.001\\ 0.038\\ 0.001\\ 0.038\\ 0.001\\ 0.$	3.006	91.58 0.12 0.03 1.66
LM-2 12/15 C	$\begin{array}{c} 37.59\\ 0.11\\ 2.95\\ 0.27\\ 0.27\\ 0.09\\ 0.15\\ 0.15\\ 0.03\\ 0.15\\ 0.03\\ 0.06\end{array}$	100.78	$\begin{array}{c} 0.985\\ 0.004\\ 0.065\\ 0.006\\ 0.001\\ 0.970\\ 0.003\\ 0.$	3.013	93.77 0.12 0.02 2.47
LM-2 11/14 C	$\begin{array}{c} 37.93\\ 0.06\\ 3.15\\ 0.04\\ 0.04\\ 0.04\\ 0.07\\ 0.01\\ 0.01\\ 0.04\\ 0.01\\ 0.01\\ 0.04\end{array}$	99.92	$\begin{array}{c} 1.002\\ 0.070\\ 0.011\\ 0.001\\ 0.973\\ 0.001\\ 0.001\\ 0.002\\ 0.933\\ 0.002\\ \end{array}$	2.997	93.06 0.12 0.02 2.24
LM-2 10/13 C	38.19 0.02 3.74 0.35 0.04 0.04 0.18 0.04 0.06 0.06	100.61	$\begin{array}{c} 1.005\\ 0.001\\ 0.082\\ 0.008\\ 0.001\\ 0.981\\ 0.081\\ 0.001\\ 0.001\\ 0.003\\ 0.003\\ 0.003\end{array}$	2.997	91.69 0.12 0.03 1.73
LM-2 09/12 C	$\begin{array}{c} 37.40\\ 0.07\\ 0.07\\ 3.01\\ 0.54\\ 0.04\\ 0.02\\ 0.14\\ 0.02\\ 0.14\\ 0.02\\ 0.02\\ 0.02\\ 0.02\end{array}$	100.26	$\begin{array}{c} 0.987\\ 0.002\\ 0.006\\ 0.012\\ 0.001\\ 0.985\\ 0.003\\ 0.003\\ 0.001\\ 0.951\\ 0.001\\ 0.001 \end{array}$	3.010	93.47 0.12 0.02 2.41
LM-2 08/11 C	$\begin{array}{c} 36.50\\ 0.02\\ 0.02\\ 0.39\\ 0.02\\ 0.02\\ 0.12\\ 0.00\\ 0.12\\ 0.00\\ 0.12\\ 0.00\\ 0.00\\ 0.00\\ 0.08\end{array}$	96.66	$\begin{array}{c} 0.988\\ 0.001\\ 0.203\\ 0.009\\ 0.001\\ 0.947\\ 0.000\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.004\end{array}$	3.011	80.81 0.12 0.06 -1.57
LM-2 07/10 R	$\begin{array}{c} 36.92\\ 0.03\\ 6.49\\ 0.32\\ 0.03\\ 33.74\\ 0.05\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\end{array}$	99.04	$\begin{array}{c} 0.999\\ 0.001\\ 0.147\\ 0.007\\ 0.001\\ 0.979\\ 0.002\\ 0.000\\ 0.863\\ 0.002\\ 0.$	3.001	85.45 0.12 0.05 -0.12
LM-2 07/09 C	36.63 0.01 8.77 8.77 0.03 0.03 0.03 0.03 0.02 0.04 0.02 0.04 0.06	99.85	$\begin{array}{c} 0.991\\ 0.000\\ 0.198\\ 0.007\\ 0.001\\ 0.945\\ 0.001\\ 0.001\\ 0.000\\ 0.862\\ 0.003\\ 0.$	3.010	81.27 0.12 0.06 -1.45
LM-2 06/08 C	35.85 0.01 0.22 0.04 0.15 0.04 0.15 0.04 0.15 0.04	99.42	$\begin{array}{c} 0.990\\ 0.000\\ 0.250\\ 0.001\\ 1.003\\ 0.001\\ 0.003\\ 0.001\\ 0.750\\ 0.005\\ 0.005\end{array}$	3.010	74.99 0.12 0.08 -2.82
LM-2 05/07 R	$\begin{array}{c} 36.41\\ 0.01\\ 9.36\\ 0.03\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.02\\ 0.03\\ 0.02\\ 0.03\\ 0.03\\ 0.09\end{array}$	66.66	$\begin{array}{c} 0.988\\ 0.000\\ 0.212\\ 0.008\\ 0.001\\ 0.949\\ 0.001\\ 0.001\\ 0.848\\ 0.005\\ 0.005\end{array}$	3.013	79.97 0.12 0.06 -1.81
LM-2 05/06 C	$\begin{array}{c} 35.76\\ 0.00\\ 111.71\\ 0.25\\ 0.03\\ 33.76\\ 0.00\\ 0.04\\ 0.00\\ 0.01\\ 0.12\\ 0.12\end{array}$	99.54	$\begin{array}{c} 0.990\\ 0.000\\ 0.271\\ 0.006\\ 0.001\\ 1.001\\ 0.000\\ 0.001\\ 0.000\\ 0.737\\ 0.006\end{array}$	3.013	73.11 0.12 0.08 -3.49
LM-2 04/05 C	$\begin{array}{c} 36.36\\ 0.02\\ 0.02\\ 0.03\\ 0.03\\ 0.02\\ 0.12\\ 0.04\\ 0.12\\ 0.12\\ 0.12\\ 0.12\end{array}$	99.47	$\begin{array}{c} 0.990\\ 0.001\\ 0.210\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.002\\ 0.001\\ 0.848\\ 0.006\end{array}$	3.010	80.17 0.12 0.06 -1.74
LM-2 03/04 C	$\begin{array}{c} 36.13\\ 0.02\\ 0.22\\ 0.03\\ 33.75\\ 0.05\\ 0.09\\ 0.04\\ 0.16\\ 0.16\end{array}$	99.78	0.992 0.001 0.249 0.005 0.002 0.002 0.002 0.001 0.757 0.009	3.010	75.27 0.12 0.08 -2.83
LM-2 02/03 R	$\begin{array}{c} 37.02\\ 0.01\\ 6.29\\ 0.23\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.05\\ 0.05\end{array}$	99.85	$\begin{array}{c} 0.995\\ 0.000\\ 0.141\\ 0.005\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.859\\ 0.003\\ 0.003 \end{array}$	3.005	85.87 0.12 0.04 0.03
LM-2 02/02 C	$\begin{array}{c} 36.44\\ 0.03\\ 8.72\\ 0.38\\ 0.38\\ 0.03\\ 0.02\\ 0.10\\ 0.01\\ 0.01\\ 0.01\\ 0.09\end{array}$	99.66	0.989 0.001 0.198 0.009 0.001 0.001 0.002 0.002 0.005 0.005	3.011	81.20 0.12 0.06 -1.42
LM-2 01/01 C	$\begin{array}{c} 36.63\\ 0.01\\ 8.86\\ 0.38\\ 0.00\\ 0.04\\ 0.11\\ 0.01\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$	99.55	$\begin{array}{c} 0.995\\ 0.000\\ 0.201\\ 0.009\\ 0.001\\ 0.947\\ 0.001\\ 0.002\\ 0.846\\ 0.004\\ 0.004\end{array}$	3.006	80.78 0.12 0.06 -1.54
Sample Grain/Analysis Location	$\begin{array}{c} \mathrm{SiO}_2\\\mathrm{Al}_2\mathrm{O}_3\\\mathrm{FeO}\\\mathrm{MnO}\\\mathrm{NiO}\\\mathrm{CaO}\\\mathrm{CaO}\\\mathrm{TiO}_2\\\mathrm{C1}_2\mathrm{O}_3\\\mathrm{MgO}\\\mathrm{Na}_2\mathrm{O}\\\mathrm{Na}_2\mathrm{O}\end{array}$	Total:	Al Fe Ng C Ti K Ca Ng Cr	Cations:	Mg# XFeLiq XFeMtc ANNO

OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P.

DOI: 10.1590/2317-4889202020190087

Svisero

LM3-1 29/38 R	37.14 0.06 3.24 0.35 0.04 0.00 0.00 0.00 0.05	100.35	$\begin{array}{c} 0.981\\ 0.002\\ 0.072\\ 0.008\\ 0.001\\ 0.987\\ 0.001\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\end{array}$	3.018 93.08 0.12 0.02 2.22
meature LM3-1 28/37 C	$\begin{array}{c} 37.40\\ 0.03\\ 7.53\\ 0.03\\ 0.03\\ 33.93\\ 0.06\\ 0.00\\ 0.00\\ 0.02\\ 0.02\end{array}$	101.12	0.996 0.001 0.168 0.013 0.001 0.968 0.001 0.001 0.001 0.855 0.001	3.003 83.59 0.12 0.05 -0.74
n; 1 - uner LM3-1 27/36 R	36.57 0.03 6.72 0.38 0.02 0.02 0.07 0.02 0.02 0.02 0.02 0.02 0.02	100.62	0.978 0.001 0.150 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000	3.022 85.69 0.12 0.05 -0.18
е, х - ти LM3-1 27/35 С	37.01 0.01 9.59 0.03 0.03 0.00 0.16 0.03 0.16 0.16 0.10	100.72	0.996 0.000 0.216 0.001 0.001 0.003 0.003 0.003 0.003 0.003	3.003 79.14 0.12 0.07 -2.02
LM3-1 LM3-1 26/34 C	$\begin{array}{c} 35.16\\ 0.12\\ 0.57\\ 0.57\\ 0.07\\ 0.07\\ 0.14\\ 0.05\\ 0.07\\ 0.07\\ 0.04\end{array}$	98.63	$\begin{array}{c} 0.969\\ 0.004\\ 0.181\\ 0.181\\ 0.013\\ 1.000\\ 0.003\\ 0.003\\ 0.003\\ 0.001\\ 0.852\\ 0.002\end{array}$	3.028 82.47 0.12 0.05 -0.84
4 oxigen LM-2 25/33 R	$\begin{array}{c} 37.19\\ 0.03\\ 0.03\\ 0.31\\ 0.04\\ 0.06\\ 0.06\\ 0.06\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$	100.19	0.988 0.001 0.100 0.007 0.001 0.001 0.001 0.001 0.019 0.000 0.010	3.010 90.20 0.12 0.03 1.22
LM-2 LM-2 25/32 C	$\begin{array}{c} 36.25\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.05\\ 0.07\\ 0.01\\ 0.01\\ 0.04\end{array}$	100.55	$\begin{array}{c} 0.983\\ 0.001\\ 0.229\\ 0.014\\ 0.001\\ 0.960\\ 0.002\\ 0.001\\ 0.002\\ 0.000\\ 0.002\\ 0.002\end{array}$	3.017 78.25 0.12 0.07 -2.27
a on m LM-2 24/31 C	$\begin{array}{c} 36.98\\ 0.02\\ 9.77\\ 0.73\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.00\\ 0.04\end{array}$	99.84	$\begin{array}{c} 1.004 \\ 0.001 \\ 0.222 \\ 0.017 \\ 0.000 \\ 0.934 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.815 \\ 0.002 \end{array}$	2.996 78.59 0.12 0.07 -2.19
LM-2 LM-2 23/30 C	37.81 0.01 3.95 0.23 0.05 34.75 0.03 0.03 0.03 0.01 23.92 0.01	100.88	$\begin{array}{c} 0.993\\ 0.000\\ 0.087\\ 0.005\\ 0.001\\ 0.978\\ 0.001\\ 0.002\\ 0.002\\ 0.000\\ 0.937\\ 0.001\\ 0.001\\ 0.001\\ \end{array}$	3.006 91.52 0.12 0.03 1.61
LM-2 22/29 R	37.33 0.03 6.85 0.46 0.04 0.05 0.05 0.08 0.00 21.84 0.05	100.13	$\begin{array}{c} 1.000\\ 0.001\\ 0.153\\ 0.153\\ 0.010\\ 0.001\\ 0.958\\ 0.002\\ 0.002\\ 0.002\\ 0.003\\ 0.003\end{array}$	3.001 85.03 0.12 0.05 -0.35
ucturat. LM-2 22/28 C	$\begin{array}{c} 36.97\\ 0.01\\ 9.49\\ 0.61\\ 0.02\\ 32.60\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.04\\ 0.04\end{array}$	100.50	$\begin{array}{c} 0.997\\ 0.000\\ 0.214\\ 0.014\\ 0.001\\ 0.942\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.$	3.002 79.45 0.12 0.07 -1.97
LM-2 LM-2 21/27 R	37.94 0.03 5.35 0.36 0.01 33.59 0.00 0.00 0.00 0.02 0.03	100.38	$\begin{array}{c} 1.004\\ 0.001\\ 0.118\\ 0.008\\ 0.000\\ 0.952\\ 0.000\\ 0.000\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ \end{array}$	2.996 88.47 0.12 0.04 0.59
LM-2 LM-2 21/26 C	36.52 0.02 9.88 0.61 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06	99.83	$\begin{array}{c} 0.994\\ 0.001\\ 0.225\\ 0.014\\ 0.001\\ 0.936\\ 0.001\\ 0.001\\ 0.001\\ 0.830\\ 0.003\\ 0.003 \end{array}$	3.006 78.68 0.12 0.07 -2.20
LM-2 20/25 C	36.78 0.10 7.45 0.49 0.04 0.03 0.12 0.03 0.12 0.00 0.03	100.11	$\begin{array}{c} 0.988\\ 0.003\\ 0.167\\ 0.011\\ 0.001\\ 0.947\\ 0.001\\ 0.002\\ 0.002\\ 0.887\\ 0.002\end{array}$	3.010 84.12 0.12 0.05 -0.67
monuce LM-2 19/24 R	$\begin{array}{c} 37.30\\ 0.06\\ 3.75\\ 0.26\\ 0.00\\ 35.05\\ 0.06\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.05\\ 0.05\end{array}$	100.49	$\begin{array}{c} 0.985\\ 0.002\\ 0.006\\ 0.006\\ 0.002\\ 0.002\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.002\\ 0.002\\ \end{array}$	3.015 91.90 0.12 0.03 1.79
LM-2 LM-2 19/23 C	$\begin{array}{c} 36.63\\ 0.03\\ 9.75\\ 0.66\\ 0.01\\ 33.03\\ 0.02\\ 0.02\\ 0.06\\ 0.06\\ 0.06\end{array}$	100.20	0.995 0.001 0.221 0.015 0.001 0.001 0.001 0.001 0.001 0.003	3.005 78.43 0.12 0.07 -2.12
concent LM-2 18/22 C	$\begin{array}{c} 37.96\\ 0.12\\ 5.19\\ 0.45\\ 0.04\\ 0.08\\ 0.08\\ 0.00\\ 0.03\\ 0.03\\ 0.03\end{array}$	98.90	$\begin{array}{c} 1.017\\ 0.004\\ 0.116\\ 0.010\\ 0.002\\ 0.002\\ 0.002\\ 0.000\\ 0.886\\ 0.001\\ 0.001 \end{array}$	2.981 88.39 0.12 0.04 0.63
LM-2 17/21 R	$\begin{array}{c} 37.20\\ 0.00\\ 6.08\\ 0.90\\ 0.03\\ 34.48\\ 0.02\\ 0.14\\ 0.02\\ 0.14\\ 0.00\\ 0.03\end{array}$	100.53	$\begin{array}{c} 0.994\\ 0.000\\ 0.136\\ 0.020\\ 0.001\\ 0.987\\ 0.001\\ 0.003\\ 0.003\\ 0.002\\ 0.002\\ 0.002\end{array}$	3.005 86.39 0.12 0.04 0.13
Sample Sample Grain/Analysis Location	$\begin{array}{c} \mathrm{SiO}_2 \\ \mathrm{AI}_2 \mathrm{O}_3 \\ \mathrm{FeO} \\ \mathrm{MnO} \\ \mathrm{NiO} \\ \mathrm{CaO} \\ \mathrm{K}_2 \mathrm{O} \\ \mathrm{K}_2 \mathrm{O} \\ \mathrm{MgO} \\ \mathrm{MgO} \\ \mathrm{Na}_2 \mathrm{O} \end{array}$	Total:	Si Fe N Mn C T K a S N N Sa Si	Cations: Mg# XFeLiq XFeMtc ΔNNO

nundiato . F . Q ζ VJU calculated on the basis 10 Incorre et lon 1 Ctro 20/0000 110 nticallita for 5 ; Supplementary Material B Svisero

ero	21 21 34 03	00 00 04	72	001 01 01 02 00 01 01 01 02	06 05 05 62
LM3 C C			. 99.	0.0000000000000000000000000000000000000	3 3.0 83. 7 0.0
LM3-1 43/57 C	$\begin{array}{c} 36.27\\ 0.02\\ 10.5^{2}\\ 0.76\\ 0.03\end{array}$	32.44 0.05 0.10 20.02 0.06	100.45	0.980 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	3.013 77.41 0.12 0.00 -2.60
<i>iate</i> LM3-1 R R	36.69 0.17 3.77 0.22 0.05	$\begin{array}{c} 33.73\\ 0.14\\ 0.14\\ 0.22\\ 0.04\\ 25.14\\ 25.14\end{array}$	100.23	$\begin{array}{c} 0.971\\ 0.005\\ 0.0083\\ 0.005\\ 0.005\\ 0.005\\ 0.004\\ 0.001\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\end{array}$	3.026 92.24 0.12 0.03 1.79
ntermed LM3-1 42/55 C	36.31 0.03 11.31 0.63 0.01	32.19 0.03 0.04 0.01 19.35 0.04	99.94	$\begin{array}{c} 0.994\\ 0.001\\ 0.259\\ 0.015\\ 0.001\\ 0.944\\ 0.001\\ 0.001\\ 0.000\\ 0.790\\ 0.002\\ 0.002\\ \end{array}$	3.006 75.30 0.12 0.08 -3.24
<i>rim; I - i</i> LM3-1 C C	37.89 0.00 4.24 0.29 0.00	35.18 0.08 0.01 0.00 23.16 0.01	100.85	$\begin{array}{c} 0.998\\ 0.000\\ 0.006\\ 0.006\\ 0.003\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000 \end{array}$	3.003 90.68 0.12 0.03 1.38
<i>core; R -</i> JM3-1] 41/53 C	36.31 0.07 10.23 0.64 0.02	$\begin{array}{c} 32.91 \\ 0.04 \\ 0.07 \\ 0.00 \\ 19.77 \\ 0.08 \end{array}$	100.14	$\begin{array}{c} 0.989\\ 0.002\\ 0.233\\ 0.015\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.803\\ 0.004\\ \end{array}$	3.011 77.49 0.12 0.07 -2.42
ens. C - c JM3-1 1 40/52 C	37.11 0.01 6.35 0.39 0.03	34.69 0.04 0.01 22.12 0.00	100.77	$\begin{array}{c} 0.989\\ 0.000\\ 0.141\\ 0.001\\ 0.990\\ 0.000\\ 0.000\\ 0.879\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	3.011 86.12 0.12 0.04 0.01
of 4 oxig JM3-1 1 39/51 C	36.53 0.03 9.02 0.58 0.01	33.07 0.00 0.10 0.00 21.18 0.06	100.59	$\begin{array}{c} 0.985\\ 0.001\\ 0.203\\ 0.013\\ 0.000\\ 0.955\\ 0.000\\ 0.002\\ 0.003\\ 0.003\end{array}$	3.014 80.71 0.12 0.06 -1.59
<i>he basis</i> JM3-1 1 R	37.83 0.02 4.12 0.23 0.05	34.97 0.02 0.00 0.00 23.91 0.02	101.29	$\begin{array}{c} 0.991\\ 0.001\\ 0.005\\ 0.005\\ 0.001\\ 0.982\\ 0.001\\ 0.002\\ 0.001\\ 0.001\\ 0.001\\ 0.001\end{array}$	3.008 91.18 0.12 0.03 1.49
lated on 1 M3-1 I 38/49 C	36.38 0.02 8.04 0.58 0.04	$\begin{array}{c} 33.64\\ 0.08\\ 0.67\\ 0.02\\ 21.26\\ 0.08\end{array}$	100.81	$\begin{array}{c} 0.977\\ 0.001\\ 0.181\\ 0.181\\ 0.013\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.004\\ 0.000\\ 0.004\end{array}$	3.012 82.49 0.12 0.06 -1.02
ıla calcu M3-1 I 37/48 R	35.83 0.11 3.84 0.28 0.05	34.97 0.10 1.65 0.00 222.19 0.06	99.08	$\begin{array}{c} 0.965\\ 0.003\\ 0.0087\\ 0.006\\ 0.001\\ 1.009\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\end{array}$	3.003 91.15 0.12 0.03 1.67
ral formu M3-1 I 37/47 C	36.52 0.02 9.38 0.36 0.03	$\begin{array}{c} 32.79\\ 0.04\\ 0.09\\ 0.00\\ 20.95\\ 0.10\end{array}$	100.30	$\begin{array}{c} 0.988\\ 0.001\\ 0.212\\ 0.008\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.005\\ 0.005\end{array}$	3.013 79.92 0.12 0.07 -1.83
s. Structu M3-1 1 36/46 C	37.66 0.01 4.25 0.28 0.04	34.78 0.16 0.01 0.01 22.76 0.07	100.01	$\begin{array}{c} 1.001\\ 0.000\\ 0.094\\ 0.005\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.003\\ 0.003 \end{array}$	3.003 90.51 0.12 0.03 1.36
l sample: 	36.60 0.01 10.09 0.44 0.02	$\begin{array}{c} 32.53\\ 0.01\\ 0.06\\ 0.03\\ 20.83\\ 0.12\\ 0.12\end{array}$	100.74	$\begin{array}{c} 0.988\\ 0.000\\ 0.228\\ 0.010\\ 0.001\\ 0.941\\ 0.001\\ 0.001\\ 0.838\\ 0.006\\ 0.006\end{array}$	3.014 78.62 0.12 0.07 -2.29
e from al M3-1 I S4/44 C	36.28 1.06 3.98 0.40 0.02	33.74 0.05 0.38 0.08 24.23 0.09	100.31	$\begin{array}{c} 0.960\\ 0.033\\ 0.033\\ 0.088\\ 0.009\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.005\end{array}$	3.018 91.56 0.12 0.03 1.59
onticellit M3-1 I 33/43 C	38.01 0.02 2.99 0.21 0.06	34.92 0.08 0.07 0.04 24.81 0.03	01.24	0.991 0.001 0.005 0.005 0.001 0.975 0.001 0.001 0.001 0.002	3.009 93.66 0.12 0.02 2.43
tion of m M3-1 L 82/42 T	37.94 0.13 2.97 0.22 0.04	35.45 0.14 0.13 0.09 0.09 0.09	01.02	$\begin{array}{c} 0.993\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.005\\ 0.$	3.006 93.46 0.12 0.02 2.42
oncentra M3-1 L S1/40 C	37.29 0.04 4.12 0.56 0.01	35.78 0.13 0.07 0.01 21.65 0.20	99.86	$\begin{array}{c} 0.997\\ 0.001\\ 0.092\\ 0.013\\ 0.000\\ 1.025\\ 0.001\\ 0.001\\ 0.000\\ 0.863\\ 0.010\\ 0.010\\ \end{array}$	3.008 90.35 0.12 0.03 1.45
aterial B element c M3-1 L 30/39 C	37.78 0.13 4.35 0.38 0.03	34.14 0.13 0.10 0.00 23.50 0.02	100.57	$\begin{array}{c} 0.997\\ 0.004\\ 0.0096\\ 0.009\\ 0.005\\ 0.002\\ 0.002\\ 0.002\\ 0.001\\ 0.001\\ 0.001\end{array}$	3.002 90.59 0.12 0.03 1.28
Supplementary Mi <i>TABLE B3. Major i</i> Sample Grain/Analysis Location	SiO ₂ Al ₂ O ₃ FeO NiO	CaO K_2O Cr_2O_3 MgO Na_2O	Total:	Si Fe Al N M C Ti K a N M S N S Si Si Si Si Si Si Si Si Si Si Si Si S	Cations: Mg# XFeLiq XFeMtc ΔNNO

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY:

TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P.

Svi

una Coldebella,	Rogério	Guitarrari	Azzone,	Luar	nna Cl	hmyz	, Exc	elso	Rube	erti, I	Darcy	/ P.													
Isero		LM3-2 62/82 C	37.79	0.07	3.04 0.35	0.03	33.31	0.03	0.07	24.34	0.04	99.27	1.001	0.002	0.008	0.001	0.945	0.004	0.001	0.961 0.002	2.994	03 45	0.12	0.02 2 34	
		LM3-2 61/81 R	37.52	0.12	3.23 0.21	0.01	33.91	0.16	00.0	24.45	0.08	99.81	0.992	0.004	0.005	0.000	0.961	0.002	0.000	0.964 0.004	3.008	03 10	0.12	0.02 2.20	
	ate	LM3-2 61/80 C	36.87	0.04	8.99 0.61	0.00	31.89	0.02	00.0	21.24	0.03	99.73	0.998	0.001	0.014	0.000	0.925	0.001	0.000	0.857 0.002	3.002	80.80	0.12	0.06 -1 64	
	ntermedi	LM3-2] 60/79 C	36.61	0.01	9.40 0.36	0.03	31.72	0.01	0.00	20.98	0.09	99.26	0.997	0.000	0.008	0.001	0.925	0.001	0.000	0.852 0.005	3.004	79.01	0.12	0.07 -1 89	0.4
	rim; I - i	59/78 C	37.20	0.03	5.73 0.40	0.03	32.82	0.05	0.04	22.54	0.05	98.90	1.002	0.001 0.129	0.009	0.001	0.947	0.001	0.001	0.905 0.003	2.999	87 51	0.12	0.04 0.34	
	core; R -	LM3-2 1 58/77 R	36.52	0.07	6.99 0.42	0.03	32.63	0.05	0.01	22.14	0.04	99.10	0.989	0.002	0.010	0.001	0.946	0.002 0.004	0.000	0.894 0.002	3.007	84.95	0.12	0.05 -0.40	2
	ens. C - i	58/76 C	36.83	0.01	8.89 0.51	0.02	31.97	0.02	0.04	21.07	0.07	99.56	0.998	0.000	0.012	0.000	0.929	0.003	0.001	0.851 0.004	3.001	80.85	0.12	0.06 -1 59	2.1
	of 4 oxig	LM3-2] 57/74 C	37.30	0.02	7.53 0 49	0.05	32.54	0.02	0.07	21.62	0.06	99.71	1.004	0.001 0.169	0.011	0.001	0.938	0.001	0.000	0.867 0.003	2.996	83.65	0.12	0.05 -0.78	0
	the basis	LM3-2 54/71 R	36.86	0.01	7.68 0.50	0.01	32.17	0.01	0.06	21.74	0.06	99.18	0.998	0.000	0.011	0.000	0.933	0.002	0.001	0.878 0.003	3.001	83 45	0.12	0.05 -0.84	
	lated on	LM3-2 54/70 C	37.58	0.02	5.91 0.42	0.01	33.06 2	0.04	00.00	22.54	0.03	99.68	1.004	0.001	0.009	0.000	0.947	0.001	0.000	0.898 0.002	2.996	87 17	0.12	0.04 0.22	
	ula calcu	53/69 C	37.79	0.04	3.66 0.58	0.05	33.50	0.03	0.06	23.91	0.05	99.83	1.000	0.001	0.013	0.001	0.950	0.003	0.001	0.943 0.003	2.997	00 C0	0.12	0.03 1 80	00.4
	ıral form	52/68 C	37.49	0.01	4.00 0.31	0.03	34.47 2.2.	0.04	0.03	23.49	0.00	99.87	0.995	0.000	0.007	0.001	0.981	0.000	0.001	0.930 0.000	3.005	91 28	0.12	0.03	
	s. Structi	LM3-2 51/67 C	37.41	0.01	3.91 0.29	0.01	33.62	0.00	00.0	23.69	0.01	99.01	0.999	0.000	0.006	0.000	0.962	0.000	0.000	0.943 0.001	3.002	01 57	0.12	0.03 1 63	2014
	ll sample	50/66 C	37.25	0.01	5.46 0.39	0.03	33.66 2	0.03	00.0	22.58	0.03	99.48	0.998	0.000	0.009	0.001	0.966	0.001	0.000	0.902 0.002	3.002	88 05	0.12	0.04 0.53	2
	te from a	LM3-2 49/65 C	36.54	0.01	7.76	0.02	33.12	0.07	0.01	21.54	0.04	69.66	0.989	0.000	0.012	0.000	0.960	0.001	0.000	0.869 0.002	3.012	83 18	0.12	0.05 -0.85	2000
	nonticelli	LM3-1 48/64 C	35.19	1.69	5.24 0.21	0.03	31.60	1.42 0.61	0.16	23.76	0.10	100.03	0.943	0.017	0.005	0.001	0.907	0.049	0.003	0.949 0.005	3.044	88 00	0.12	0.04	20.0
	ation of n	LM3-1 46/61 R	37.68	0.06	5.08 0.39	0.05	34.15	0.01	0.04	23.10	0.04	100.76	0.995	0.002	0.009	0.001	0.966	0.003	0.001	0.910 0.002	3.002	89.01	0.12	0.04 0.78	0
~	oncentra concentra	LM3-1 46/60 C	36.29	0.02	9.91 0.71	0.00	32.64 2	0.00	01.0	20.07	0.06	99.80	0.990	0.001	0.016	0.000	0.954	0.000	0.000	0.816 0.003	3.009	78 30	0.12	0.07 -2 20	i
fatarial I	ialchal r element	LM3-1 45/59 C	36.62	0.03	7.58 0.49	0.01	33.61	0.05	0.03	22.08	0.05	100.62	0.982	0.001	0.011	0.000	0.965	0.002	0.001	0.882 0.003	3.018	83 84	0.12	0.05 -0.71	-
Sumlamonton, N	Supplementary Major TABLE B3. Major	Sample Grain/Analysis Location	SiO,	${ m Al}_2 { m ilde O}_3$	FeO MnO	NiO	CaO	K_2O	Cr,O,	MgO	Na_2O	Total:	Si	AI Fe	Mn	Ņ	Ca	2 []	Cr	Mg Na	Cations:	Mo#	XFeLiq	XFeMtc ANNO	

DOI: 10.1590/2317-4889202020190087

OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS

Bru Svi

Supplementary Material B **TABLE B3.** Major element concentration of monticellite from all samples. Structural formula calculated on the basis of 4 oxigens. C - core; R - rim; I - intermediate

LM3-2 68/90	С	31.10	0.05	6.39	0.45	0.05	32.77	0.02	0.14	0.01	22.72	0.04	90.76	0.994	0.001	0.143	0.010	0.001	0.941	0.001	0.003	0.000	0.907	0.002	3.004	86.37	0.12	0.04	-0.05
LM3-2 67/89	С	51.08	0.02	5.98	0.43	0.03	33.31	0.01	0.05	0.03	22.43	0.03	99.40	0.996	0.000	0.134	0.010	0.001	0.959	0.000	0.001	0.001	0.899	0.001	3.003	86.98	0.12	0.04	0.21
LM3-2 66/88	С	50.94	0.07	3.67	0.24	0.02	33.52	0.05	0.21	0.02	24.38	0.08	99.20	0.985	0.002	0.082	0.005	0.000	0.958	0.002	0.004	0.001	0.969	0.004	3.013	92.21	0.12	0.03	1.84
LM3-2 65/87	R	50.91	00.00	6.99	0.49	0.04	32.47	0.03	0.07	0.01	22.60	0.04	99.64	0.992	0.000	0.157	0.011	0.001	0.935	0.001	0.001	0.000	0.906	0.002	3.008	85.21	0.12	0.05	-0.40
LM3-2 65/86	С	37.10	0.01	9.68	0.62	0.01	31.82	0.06	0.02	0.00	20.44	0.07	99.89	1.007	0.000	0.219	0.014	0.000	0.923	0.002	0.000	0.000	0.825	0.004	2.996	79.00	0.12	0.07	-2.14
LM3-2 64/85	С	50.35	0.07	6.55	0.45	0.05	31.35	0.02	0.07	0.07	23.94	0.03	98.95	0.981	0.002	0.148	0.010	0.001	0.906	0.001	0.001	0.001	0.963	0.001	3.017	86.69	0.12	0.05	-0.10
LM3-2 63/84	R	51.80	0.01	4.17	0.32	0.03	34.53	0.01	0.01	0.00	23.69	0.00	100.63	0.997	0.000	0.092	0.007	0.001	0.975	0.000	0.000	0.000	0.930	0.000	3.003	91.01	0.12	0.03	1.44
LM3-2 63/83	С	CZ.15	0.01	6.85	0.48	0.04	32.70	0.03	0.03	00.00	22.40	0.02	99.81	0.999	0.000	0.154	0.011	0.001	0.939	0.001	0.001	0.000	0.895	0.001	3.002	85.35	0.12	0.05	-0.34
Sample Grain/Analysis	Location	SIU ₂	AI_2O_3	FeO	MnO	NiO	CaO	$ m K_2O$	TiO_2	Cr_2O_3	MgO	Na_2O	Total:	Si	AI	Fe	Mn	Ni	Ca	K	Ti	Cr	Mg	Na	Cations:	Mg#	XFeLiq	XFeMtc	ΔNNO

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS

Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

<i>C</i> -	core; R -	- rim; I - i	ntermedic	ite.									
Sample	TR-4	TR-02	TR-02	TR-4	TR-02	TR-4	TR-02	TR-4	TR-02	TR-4	TR-02	TR-4	TR-02
Grain/	01/01	01/01	01/02	01/02	01/02	02/02	02/04	02/04	02/05	02/05	02/06	02/06	02/07
Analysis	01/01	01/01	01/02	01/02	01/03	02/03	02/04	02/04	02/03	03/03	03/00	03/00	03/07
Location	C	С	Ι	R	R	С	С	R	R	С	С	R	R
SiO_2	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe_2O_3	1.21	1.45	1.50	1.21	1.67	1.72	1.34	1.94	1.49	1.47	1.03	1.49	1.25
La_2O_3	2.77	3.55	3.07	2.37	2.58	3.27	3.29	3.07	2.56	3.22	1.97	3.30	0.99
Sm_2O_3	0.20	0.31	0.28	0.17	0.24	0.21	0.30	0.20	0.22	0.20	0.19	0.21	0.10
Pr_2O_3	0.65	0.80	0.61	0.50	0.48	0.77	0.77	0.69	0.42	0.76	0.40	0.75	0.13
CaO	30.11	25.14	29.61	32.62	32.12	28.06	28.06	29.21	32.12	27.35	33.93	27.50	37.95
Nb_2O_5	0.99	2.36	1.70	0.92	1.67	1.57	1.86	1.18	1.50	2.73	0.78	2.62	1.00
SrO	0.74	0.78	0.74	0.74	0.79	0.73	0.76	0.75	0.78	0.78	0.62	0.80	0.67
ZrO_2	0.07	0.25	0.23	0.09	0.24	0.17	0.18	0.10	0.16	0.24	0.09	0.22	0.14
ThO_2	0.67	2.45	0.38	0.21	0.04	1.32	1.12	0.65	0.09	1.19	0.25	1.27	0.00
TiO ₂	50.80	48.03	50.53	52.37	51.30	49.15	49.60	49.33	51.25	48.17	53.15	48.42	55.01
BaO	0.00	0.10	0.11	0.00	0.11	0.00	0.10	0.00	0.11	0.00	0.15	0.00	0.13
Ce_2O_3	6.68	8.85	7.00	5.35	5.19	7.81	7.85	6.95	5.27	7.65	4.50	7.88	1.40
Nd_2O_3	2.16	2.77	2.17	1.72	1.58	2.47	2.44	2.21	1.60	2.40	1.49	2.45	0.39
Na ₂ O	1.83	3.05	2.17	1.49	1.57	2.09	2.38	1.79	1.56	2.39	1.26	2.42	0.65
MgO	0.00	0.08	0.06	0.00	0.07	0.00	0.05	0.00	0.06	0.00	0.03	0.00	0.04
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Ta_2O_5	0.00	0.45	0.11	0.00	0.04	0.00	0.22	0.00	0.02	0.00	0.11	0.00	0.01
Total	98.89	100.43	100.27	99.76	99.70	99.35	100.30	98.07	99.23	98.55	99.94	99.33	99.83
Si	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.023	0.028	0.031	0.022	0.025	0.033	0.027	0.037	0.019	0.028	0.022	0.028	0.024
La	0.025	0.028	0.023	0.021	0.030	0.030	0.023	0.029	0.017	0.030	0.008	0.031	0.031
Sm	0.002	0.002	0.002	0.001	0.003	0.002	0.002	0.002	0.002	0.002	0.001	0.002	0.002
Pr	0.006	0.006	0.004	0.004	0.007	0.007	0.004	0.006	0.004	0.007	0.001	0.007	0.006
Ca	0.803	0.782	0.837	0.847	0.752	0.759	0.841	0.790	0.872	0.746	0.946	0.746	0.733
Nb	0.011	0.019	0.018	0.010	0.021	0.018	0.017	0.013	0.008	0.031	0.011	0.030	0.032
Sr	0.011	0.011	0.011	0.010	0.011	0.011	0.011	0.011	0.009	0.011	0.009	0.012	0.011
Zr	0.001	0.003	0.003	0.001	0.002	0.002	0.002	0.001	0.001	0.003	0.002	0.003	0.003
Th	0.004	0.002	0.000	0.001	0.006	0.008	0.001	0.004	0.001	0.007	0.000	0.007	0.007
Ti	0.951	0.937	0.939	0.955	0.933	0.933	0.942	0.937	0.960	0.922	0.963	0.922	0.921
Ba	0.000	0.001	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001
Ce	0.061	0.063	0.046	0.047	0.072	0.072	0.047	0.064	0.040	0.071	0.012	0.073	0.074
Nd	0.019	0.019	0.014	0.015	0.022	0.022	0.014	0.020	0.013	0.022	0.003	0.022	0.021
Na	0.088	0.104	0.074	0.070	0.115	0.102	0.074	0.088	0.058	0.118	0.029	0.119	0.129
Mg	0.000	0.002	0.003	0.000	0.002	0.000	0.002	0.000	0.001	0.000	0.001	0.000	0.002
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.001	0.000	0.000	0.002	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.002
Cations	2.004	2.007	2.007	2.007	2.003	1.998	2.009	2.003	2.007	1.999	2.010	2.001	2.001
lueshite	0.01	0.03	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.03	0.01	0.03	0.01
loparite	0.16	0.25	0.17	0.12	0.11	0.17	0.19	0.15	0.12	0.18	0.10	0.18	0.04
<i>REEFeO</i> ₃	0.02	0.03	0.03	0.02	0.03	0.03	0.03	0.04	0.03	0.03	0.02	0.03	0.01
tausonite	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
$REE_2Ti_2O_7$	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.79	0.68	0.76	0.83	0.82	0.75	0.74	0.78	0.82	0.74	0.86	0.73	0.93
Fe/Nb	2.04	1.47	1.67	2.20	1.20	1.82	1.66	2.74	2.20	0.90	2.07	0.95	0.74
ANNO	-3.21	-2.91	-2.14	-3.22	-3.83	-1.57	-2.71	0.03	-3.91	-4.39	-3.36	-4.15	-5.60

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C_{-} core: R_{-} rim: L_{-} intermediate

<u> </u>	$\frac{core, K}{TD}$	$- r_{lm}, 1 - l$	TD 4	TD 02	TD 4	TD 07	TD 4	TD 07	TD 4	TD 07	TD 4	TD 07	TD 4
Sample	TR-4	TR-02	1 R- 4	TR-02	TR-4	TR-07	1 R- 4	TR-07	TR-4	TR-07	TR-4	TR-07	TR-4
Grain/	04/07	04/08	04/08	04/09	05/09	05/10	05/10	05/11	06/11	06/12	06/12	06/13	07/13
Location	C	C	D	D	C	C	D	D	C	C	D	D	C
SiO		0.00	<u> </u>	<u> </u>	0.00	0.00	<u> </u>	<u> </u>	0.00	0.00	<u> </u>	<u> </u>	0.00
SIO_2	1.67	1.26	1.50	1.50	1.22	0.00	1.29	1.20	0.00	0.00	1.62	1.21	1.24
Ic_2O_3	2.24	2.26	2.60	2 70	2 25	2 20	2.59	2.76	2 20	2.28	2.26	2.09	2 11
La_2O_3	0.24	0.27	0.22	2.70	0.22	0.29	0.22	2.70	0.29	2.20	0.22	2.08	0.22
$\operatorname{Br} O$	0.21	0.27	0.23	0.21	0.22	0.20	0.23	0.24	0.22	0.21	0.22	0.18	0.22
Γ_2O_3	20.14	0.08	0.79	21.06	0.78	0.00	0.01	20.40	0.77	0.45	0.77	0.57	20.10
CaO Nh O	29.14	27.21	20.80	51.90 1.04	1.75	20.32	27.70	1.02	26.10	52.78	27.70	33.00	29.19
NU_2O_5	0.77	2.83	0.78	0.85	0.77	2.10	0.86	0.70	0.78	0.90	0.75	0.97	0.77
310 7rO	0.77	0.78	0.78	0.85	0.77	0.78	0.80	0.79	0.78	0.08	0.75	0.03	0.77
ZIO_2	0.25	0.28	0.22	0.24	0.15	0.18	0.14	0.20	0.13	0.08	0.10	0.09	0.13
TiO ₂	0.17	1.17	0.71	0.09	0.80	0.00	0.78	0.09	1.55	0.27	1.49	0.09	0.49
IIO_2	49.05	40.75	40.70	0.11	49.91	49.79	0.00	49.03	49.20	0.00	48.00	0.14	49.88
GaO	0.00	0.12	0.00	0.11 5.40	0.00	0.12	0.00	0.08	0.00	5.20	0.00	0.14	0.00
Ce_2O_3	0.64	8.07 2.20	0.20 2.54	J.49	7.99	7.55	0.24	J.70	7.01	5.20 1.74	7.90	4.50	7.09
Na_2O_3	2.12	2.39	2.34	1.07	2.30	2.54	2.01	1.60	2.30	1./4	2.35	1.57	2.27
MaQ	2.13	2.04	2.32	1.4/	2.51	2.40	2.29	1.65	2.11	1.34	2.15	0.16	1.94
ALO	0.00	0.03	0.00	0.08	0.00	0.04	0.00	0.30	0.00	0.05	0.00	0.10	0.00
AI_2O_3 Ta O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00
Ta_2O_5	0.00	0.55	0.00	0.00	0.00	0.13	100 40	0.07	0.00	0.15	0.00	100.05	0.00
Si	90.00	0.000	90.72	99.05	0.000	0.010	0.000	90.04	99.43	20.04	90.92	0.000	90.00
Fe	0.000	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.000	0.002	0.000	0.000	0.000
I e	0.031	0.029	0.030	0.022	0.023	0.020	0.020	0.020	0.030	0.022	0.031	0.029	0.023
Sm	0.030	0.024	0.034	0.030	0.031	0.023	0.033	0.021	0.031	0.018	0.031	0.010	0.029
Dr	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.002
	0.000	0.004	0.007	0.000	0.007	0.004	0.007	0.004	0.007	0.003	0.007	0.002	0.000
Nb	0.782	0.021	0.732	0.701	0.740	0.011	0.742	0.001	0.701	0.002	0.750	0.009	0.785
Sr	0.020	0.021	0.022	0.024	0.018	0.021	0.019	0.011	0.017	0.010	0.019	0.010	0.019
Zr	0.011	0.012	0.012	0.011	0.011	0.011	0.012	0.010	0.011	0.009	0.011	0.009	0.011
Th	0.005	0.005	0.003	0.002	0.002	0.002	0.002	0.001	0.002	0.001	0.002	0.001	0.002
Ti	0.001	0.001	0.004	0.003	0.003	0.001	0.004	0.001	0.000	0.000	0.007	0.000	0.005
Ba	0.935	0.955	0.933	0.933	0.943	0.923	0.940	0.947	0.934	0.957	0.930	0.955	0.940
Ce	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001	0.000
Nd	0.005	0.049	0.070	0.009	0.073	0.052	0.073	0.047	0.072	0.038	0.074	0.032	0.000
Na	0.017	0.015	0.023	0.021	0.023	0.010	0.025	0.013	0.023	0.012	0.025	0.010	0.020
Ma	0.104	0.070	0.124	0.001	0.112	0.000	0.000	0.075	0.105	0.005	0.105	0.002	0.004
Δ1	0.000	0.000	0.000	0.001	0.000	0.010	0.000	0.001	0.000	0.000	0.000	0.002	0.000
Та	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	2 008	2 004	2 003	2 006	1 999	2 013	1 997	2.016	2 001	2 007	1 999	2 000	2 000
lueshite	2.000	0.03	2.005	2.000	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.01	2.000
lonarite	0.02	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.13	0.02	0.01	0.02
REEFOO.	0.03	0.20	0.03	0.10	0.03	0.12	0.17	0.03	0.13	0.13	0.13	0.02	0.13
tausonite	0.05	0.02	0.03	0.05	0.03	0.02	0.05	0.05	0.05	0.02	0.05	0.02	0.05
REE_Ti_O_	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01	0.01
lakaroiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nerovskite	0.76	0.72	0.72	0.82	0 74	0.00	0 74	0.79	0.00	0.83	0.00	0.85	0.78
Fe/Nh	1.58	1.37	1.39	0.91	1.36	1.20	1.36	1.85	1.78	2.08	1.61	2.94	1.29
ANNO	-2.12	-2.87	-2.62	-4.98	-3.54	-3.73	-3.43	-3.89	-2.05	-3.38	-2.15	-1.58	-3.64

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C_{-} core: R_{-} rim: L_{-} intermediate

<u> </u>	<i>core</i> , <i>K</i> -	<i>TIM, 1 - 1</i>	TD	TED 10	TD 4	TD 10	TD 02	TD 4	TD 02	TD 4	TD 02	TD 4	TD 02
Sample	TR-07	TR-4	TR-4	TR-18	TR-4	TR-18	TR-03	TR-4	TR-03	TR-4	TR-03	TR-4	TR-03
Grain/	07/14	07/14	08/15	08/16	08/16	08/17	09/18	09/18	09/19	10/19	10/20	10/20	10/21
Location	C	D	C	C	р	D	C	р	р	C	C	р	T
SiO		<u> </u>	0.00	0.00	<u> </u>	<u> </u>	0.00	<u> </u>	<u> </u>	0.00	0.00	<u> </u>	1
SIO_2	0.00	1.25	1.10	1.59	1.22	1.71	0.00	1.47	0.05	0.00	1.27	1.20	1.25
$\Gamma e_2 O_3$	1.30	2.01	2.76	1.30	1.23 2.10	1./1	2.26	1.47	2.24	1.37	2.12	1.29	2.60
La_2O_3	1.60	0.21	2.70	5.27 0.29	2.19	0.29	5.20	5.40	2.54	0.11	5.12	1.01	2.09
$SIII_2O_3$	0.15	0.21	0.18	0.28	0.10	0.28	0.28	0.22	0.21	0.11	0.27	0.09	0.24
PI_2O_3	0.27	0.00	0.07	0.70	0.42	0.55	0.71	0.74	0.42	0.34	0.74	0.18	0.00
CaO Nh O	34.04	29.99	30.41	20.47	33.78	29.48	28.31	28.30	32.32	33.07	28.04	30.80	31.12
NU ₂ O ₅	0.90	1.09	0.90	4.55	0.71	2.50	1.60	1.64	1.54	0.54	1.50	0.50	1.09
310	0.07	0.70	0.70	0.81	0.71	0.84	0.76	0.70	0.73	0.52	0.75	0.55	0.72
ZIO_2	0.08	0.14	0.04	0.01	0.09	0.31	0.24	0.18	0.21	0.04	0.13	0.06	0.11
TIO_2	0.07	0.30	0.78	1.70	0.08	0.24	1.30	0.50	0.07	0.21	1.17	0.05	0.57
	53.04	50.28	51.07	46./1	52.95	49.24	49.31	49.54	51.55	53.46	50.17	35.15	51.54
BaO	0.12	0.00	0.00	0.14	0.00	0.09	0.11	0.00	0.08	0.00	0.13	0.00	0.08
Ce_2O_3	3.69	6.79 2.16	0.53	7.99	4.59	0.01	7.70	7.64	4.70	3.00	7.62	1.96	0.18
Na_2O_3	1.14	2.10	2.15	2.34	1.46	1.98	2.47	2.39	1.46	1.05	2.44	0.66	1.97
Na ₂ O	1.12	1.80	1./3	2.78	1.10	1.88	2.29	2.19	1.62	0.87	2.21	0.73	1.80
MgO	0.05	0.00	0.00	0.06	0.00	0.74	0.08	0.00	0.16	0.00	0.05	0.00	0.05
AI_2O_3	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
$1a_2O_5$	0.04	0.00	0.00	0.60	0.00	0.01	0.31	0.00	0.08	0.00	0.22	0.00	0.09
lotal	99.34	99.14	99.18	100.46	99.84	99.96	100.34	99.30	99.04	98.47	100.28	99.05	99.96
Si	0.000	0.000	0.000	0.015	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.011
Fe	0.021	0.025	0.022	0.032	0.022	0.027	0.031	0.028	0.024	0.025	0.023	0.023	0.030
La	0.013	0.028	0.025	0.028	0.019	0.030	0.021	0.031	0.029	0.011	0.024	0.009	0.018
Sm	0.001	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.001	0.002	0.001	0.001
Pr	0.002	0.006	0.006	0.005	0.004	0.007	0.004	0.007	0.00/	0.003	0.005	0.002	0.003
	0.915	0.799	0.807	0.776	0.869	0.759	0.849	0.763	0.765	0.915	0.816	0.928	0.861
ND Su	0.011	0.019	0.011	0.026	0.011	0.020	0.015	0.021	0.015	0.006	0.012	0.005	0.014
Sr	0.010	0.011	0.010	0.012	0.010	0.011	0.010	0.011	0.010	0.007	0.010	0.007	0.011
Zr	0.002	0.002	0.001	0.004	0.001	0.003	0.003	0.002	0.002	0.000	0.001	0.001	0.002
In T:	0.000	0.002	0.004	0.001	0.000	0.007	0.000	0.003	0.007	0.001	0.002	0.000	0.000
11 D-	0.960	0.940	0.952	0.910	0.957	0.928	0.941	0.935	0.940	0.963	0.949	0.975	0.935
Ва	0.001	0.000	0.000	0.001	0.000	0.001	0.001	0.000	0.001	0.000	0.001	0.000	0.001
Ce	0.023	0.062	0.059	0.059	0.040	0.070	0.042	0.070	0.070	0.026	0.055	0.01/	0.034
ING No	0.007	0.019	0.019	0.017	0.013	0.022	0.013	0.021	0.022	0.009	0.017	0.006	0.010
INa Ma	0.038	0.08/	0.083	0.090	0.054	0.111	0.077	0.107	0.107	0.040	0.088	0.033	0.055
Mg	0.001	0.000	0.000	0.027	0.000	0.003	0.006	0.000	0.002	0.000	0.002	0.000	0.024
AI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.002	0.001	0.000	0.001	0.000	0.001	0.000	0.000
	2.000	2.001	2.002	2.005	2.002	2.004	2.014	2.001	2.005	2.009	2.009	2.005	2.010
luesnite	0.01	0.02	0.01	0.05	0.01	0.03	0.02	0.02	0.02	0.01	0.02	0.01	0.01
DEEE	0.09	0.14	0.15	0.18	0.09	0.13	0.19	0.18	0.13	0.07	0.19	0.06	0.10
$KEEFeO_3$	0.02	0.03	0.02	0.03	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.01	0.02
DEE T: O	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
lakarojita	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.00	0.00
narovskite	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskile F a/ N IL	U.8/ 1 00	0.79	0.80 2 AD	U./1 1 32	0.80	U./8	0./4 2 00	0.75	0.82 1 <i>54</i>	0.90	0.73	0.92	0.79
ΔΝΝΟ	-3.56	-3.58	-3.27	-2.80	-3.30	-3.29	-1.69	-3.17	-3.48	4.24 -2.06	-3.25	4.20 -2.45	-1.87

Supplementary Material B

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C - core: R - rim: L - intermediate

<u> </u>	$\frac{core; K - I}{TD 02}$	$\frac{rlm; I - ln}{TD 4 \ 1}$	TD 4 1	$\frac{10}{\text{TP}}$	TD 02	TD 4 1	TD 4 1	TD 02	TD 02	TD 4 1	TD 4 1	TD 4 1	TD 02
Sample Grain/	1K-05	1K4-1	1K4-1	1K-05	1 K-03	1K4-1	1K4-1	1 K-03	1K-03	1K4-1	1K4-1	1 K4-1	1K-03
Analysis	10/22	11/21	11/22	11/23	11/24	12/23	12/24	12/25	12/26	13/25	13/25	13/26	13/27
Location	R	С	R	С	R	С	R	С	R	С	С	R	С
SiO ₂	0.45	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
Fe ₂ O ₃	1.66	1.75	1.68	1.49	1.94	1.76	1.73	1.96	1.65	1.39	1.39	1.48	1.75
La_2O_3	2.09	2.83	3.20	2.69	2.33	3.43	3.60	2.84	2.91	3.26	3.26	3.31	3.02
Sm ₂ O ₃	0.17	0.19	0.20	0.23	0.21	0.22	0.23	0.26	0.25	0.22	0.22	0.23	0.26
Pr_2O_3	0.34	0.64	0.67	0.50	0.33	0.83	0.83	0.58	0.56	0.82	0.82	0.82	0.59
CaO	33.90	29.76	29.59	32.03	33.46	26.12	27.02	30.61	30.56	26.42	26.42	27.06	30.66
Nb ₂ O ₅	1.32	2.38	1.72	1.29	1.54	2.75	2.25	1.45	1.67	1.58	1.58	2.05	1.97
SrO	0.80	0.82	0.82	0.76	0.81	0.82	0.78	0.77	0.82	0.72	0.72	0.73	0.82
ZrO_2	0.21	0.27	0.16	0.15	0.24	0.35	0.28	0.18	0.19	0.14	0.14	0.20	0.32
ThO ₂	0.03	0.28	0.15	0.20	0.04	2.21	1.34	0.40	0.64	2.60	2.60	2.11	0.15
TiO ₂	52.44	49.57	50.19	51.66	51.72	47.58	48.19	50.80	50.61	48.88	48.88	48.94	50.55
BaO	0.10	0.00	0.00	0.11	0.13	0.00	0.00	0.12	0.12	0.00	0.00	0.00	0.11
Ce_2O_3	3.88	6.42	6.96	5.74	4.22	8.45	8.40	6.42	6.39	8.38	8.38	8.40	6.33
Nd_2O_3	1.13	2.02	2.17	1.76	1.33	2.65	2.59	1.95	2.01	2.76	2.76	2.70	1.95
Na ₂ O	1.19	2.00	2.01	1.74	1.29	2.54	2.44	1.80	1.80	2.64	2.64	2.52	1.79
MgO	0.68	0.00	0.00	0.04	0.11	0.00	0.00	0.14	0.06	0.00	0.00	0.00	0.14
Al_2O_3	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01
Ta_2O_5	0.03	0.00	0.00	0.09	0.04	0.00	0.00	0.12	0.15	0.00	0.00	0.00	0.06
Total	100.40	98.92	99.51	100.47	99.90	99.72	99.68	100.40	100.39	99.80	99.80	100.53	100.54
Si	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.003
Fe	0.027	0.033	0.031	0.035	0.036	0.034	0.033	0.030	0.032	0.027	0.027	0.028	0.040
La	0.024	0.026	0.029	0.021	0.026	0.032	0.034	0.026	0.027	0.031	0.031	0.031	0.025
Sm	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Pr	0.004	0.006	0.006	0.003	0.005	0.008	0.008	0.005	0.005	0.008	0.008	0.008	0.004
Ca	0.832	0.793	0.787	0.862	0.803	0.715	0.735	0.804	0.803	0.720	0.720	0.730	0.827
Nb	0.014	0.027	0.019	0.017	0.016	0.032	0.026	0.019	0.022	0.018	0.018	0.023	0.024
Sr	0.011	0.012	0.012	0.011	0.011	0.012	0.011	0.012	0.012	0.011	0.011	0.011	0.012
Zr	0.002	0.003	0.002	0.003	0.002	0.004	0.003	0.002	0.004	0.002	0.002	0.002	0.006
Th	0.001	0.002	0.001	0.000	0.002	0.013	0.008	0.004	0.001	0.015	0.015	0.012	0.000
Ti	0.943	0.928	0.937	0.936	0.935	0.914	0.920	0.935	0.929	0.935	0.935	0.927	0.919
Ba	0.001	0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.001
Ce	0.051	0.058	0.063	0.037	0.058	0.079	0.078	0.057	0.057	0.078	0.078	0.077	0.047
Nd	0.015	0.018	0.019	0.011	0.017	0.024	0.023	0.018	0.017	0.025	0.025	0.024	0.014
Na	0.082	0.096	0.097	0.060	0.086	0.126	0.120	0.086	0.085	0.130	0.130	0.123	0.072
Mg	0.002	0.000	0.000	0.004	0.005	0.000	0.000	0.002	0.005	0.000	0.000	0.000	0.009
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
Cations	2.011	2.004	2.005	2.008	2.006	1.995	2.001	2.004	2.004	2.001	2.001	2.000	2.006
lueshite	0.01	0.03	0.02	0.01	0.02	0.03	0.03	0.02	0.02	0.02	0.02	0.03	0.02
loparite	0.08	0.14	0.16	0.14	0.09	0.19	0.19	0.14	0.14	0.23	0.20	0.19	0.13
$REEFeO_3$	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.03
tausonite	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
$REE_2Ti_2O_7$	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.01
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.86	0.78	0.77	0.81	0.85	0.71	0.72	0.79	0.79	0.71	0.72	0.74	0.79
Fe/Nb	1.93	1.22	1.63	2.10	2.25	1.07	1.28	1.64	1.47	1.46	1.46	1.20	1.66
<i>∆NNO</i>	-2.46	-2.65	-2.07	-0.82	-0.47	-3.01	-2.47	-2.21	-2.19	-3.12	-3.12	-3.40	-0.58

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

<i>C</i> -	core; R -	rim; I - in	itermediate	2.								
Sample	TR4-1	TR4-1	TR-04a	TR-04a	TR4-1	TR-04a	TR-04a	TR4-1	TR4-1	TR-04b	TR-04b	TR-04b
Grain/	14/27	14/28	1//20	14/30	15/20	15/31	15/32	16/30	16/31	16/33	16/34	16/35
Analysis	14/2/	14/20	14/29	14/30	13/29	15/51	15/52	10/30	10/31	10/33	10/34	10/33
Location	С	R	С	R	С	С	R	С	R	С	Ι	R
SiO_2	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe_2O_3	1.65	1.63	1.33	1.50	1.66	1.43	1.45	1.46	1.63	1.30	1.34	1.31
La_2O_3	3.14	3.25	2.56	2.08	2.92	3.11	3.18	3.23	2.55	3.40	3.16	3.22
Sm_2O_3	0.21	0.22	0.26	0.18	0.21	0.27	0.27	0.20	0.18	0.28	0.27	0.26
Pr_2O_3	0.74	0.82	0.55	0.33	0.58	0.62	0.69	0.76	0.50	0.73	0.62	0.62
CaO	27.77	26.58	31.93	34.52	30.63	29.27	29.71	27.24	31.74	27.44	28.89	28.84
Nb_2O_5	2.36	2.78	1.13	1.30	1.26	1.48	1.44	2.87	1.66	3.21	2.64	2.44
SrO	0.77	0.79	0.72	0.81	0.76	0.79	0.77	0.76	0.76	0.81	0.76	0.78
ZrO_2	0.30	0.33	0.12	0.21	0.13	0.16	0.16	0.30	0.19	0.30	0.25	0.22
ThO_2	0.99	1.90	0.20	0.02	0.25	0.76	0.62	1.45	0.11	1.27	0.63	0.63
TiO ₂	48.49	47.89	52.38	52.60	51.37	49.90	49.11	48.88	50.73	47.65	49.32	49.11
BaO	0.00	0.00	0.12	0.13	0.00	0.11	0.14	0.00	0.00	0.11	0.11	0.09
Ce_2O_3	7.51	8.06	5.53	3.68	6.44	7.22	7.14	7.87	5.36	7.84	7.14	7.18
Nd_2O_3	2.37	2.56	1.78	1.16	2.03	2.37	2.32	2.46	1.69	2.45	2.24	2.23
Na ₂ O	2.41	2.61	1.59	1.09	1.78	2.17	2.03	2.52	1.55	2.62	2.27	2.28
MgO	0.00	0.00	0.03	0.05	0.00	0.05	0.05	0.00	0.00	0.06	0.05	0.05
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Ta_2O_5	0.00	0.00	0.10	0.01	0.00	0.22	0.13	0.00	0.00	0.32	0.17	0.14
Total	98.73	99.45	100.34	99.66	100.01	99.93	99.20	99.99	98.65	99.79	99.84	99.38
Si	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.031	0.031	0.027	0.027	0.031	0.027	0.025	0.028	0.030	0.025	0.025	0.023
La	0.029	0.030	0.018	0.029	0.026	0.029	0.032	0.030	0.023	0.029	0.030	0.026
Sm	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Pr	0.007	0.008	0.003	0.006	0.005	0.006	0.007	0.007	0.005	0.006	0.006	0.006
Ca	0.754	0.725	0.886	0.781	0.804	0.799	0.745	0.733	0.837	0.771	0.774	0.780
Nb	0.027	0.032	0.014	0.017	0.014	0.016	0.037	0.033	0.018	0.030	0.028	0.031
Sr	0.011	0.012	0.011	0.011	0.011	0.011	0.012	0.011	0.011	0.011	0.011	0.012
Zr	0.004	0.004	0.002	0.002	0.001	0.002	0.004	0.004	0.002	0.003	0.003	0.003
Th	0.006	0.011	0.000	0.004	0.001	0.004	0.007	0.008	0.001	0.004	0.004	0.003
Ti	0.924	0.917	0.948	0.935	0.947	0.927	0.908	0.924	0.940	0.925	0.925	0.927
Ba	0.000	0.000	0.001	0.001	0.000	0.001	0.001	0.000	0.000	0.001	0.001	0.001
Ce	0.070	0.075	0.032	0.066	0.058	0.066	0.073	0.072	0.048	0.065	0.066	0.061
Nd	0.021	0.023	0.010	0.021	0.018	0.021	0.022	0.022	0.015	0.020	0.020	0.019
Na	0.118	0.129	0.051	0.105	0.085	0.099	0.129	0.123	0.074	0.109	0.111	0.110
Mg	0.000	0.000	0.002	0.002	0.000	0.002	0.002	0.000	0.000	0.002	0.002	0.002
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.002	0.000	0.001	0.002	0.000	0.000	0.001	0.001	0.001
Cations	2.005	1.999	2.008	2.009	2.002	2.015	2.007	1.996	2.006	2.004	2.007	2.005
lueshite	0.03	0.01	0.01	0.01	0.03	0.02	0.02	0.02	0.02	0.04	0.03	0.03
loparite	0.20	0.14	0.13	0.07	0.18	0.18	0.17	0.11	0.20	0.19	0.16	0.17
$REEFeO_3$	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.03	0.03
tausonite	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
$REE_2Ti_2O_7$	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.01
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.72	0.80	0.82	0.87	0.73	0.76	0.76	0.82	0.72	0.72	0.76	0.75
Fe/Nb	1.16	0.98	1.92	1.61	2.18	1.68	0.67	0.85	1.63	0.84	0.89	0.74
<i>∆NNO</i>	-3.01	-3.70	-2.48	-2.87	-1.60	-2.67	-5.92	-4.67	-2.26	-4.96	-4.80	-5.68

Supplementary Material B

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C - core: R - rim: I - intermediate.

Sample IR4-1 IR4-1 <t< th=""><th><u>C-</u></th><th>TD 4 1</th><th>$\frac{1}{1}$ TD 041</th><th></th><th></th><th>TD 4 1</th><th>TD 07</th><th>TD 4 1</th><th>TD 4 1</th><th>TD 10</th><th>TD 10</th><th>TD 10</th><th>TD 4 0</th><th>TD 4 0</th></t<>	<u>C-</u>	TD 4 1	$\frac{1}{1}$ TD 041			TD 4 1	TD 07	TD 4 1	TD 4 1	TD 10	TD 10	TD 10	TD 4 0	TD 4 0
Grand 1732 1736 1737 1833 18/34 18/38 19/35 19/36 19/30 19/40 19/41 20/37 20/38 Location C C R R	Sample	1K4-1	1 K-04b	1 R- 0/	1K4-1	1 K4-1	1K-0/	1K4-1	1 K4-1	1K-18	1K-18	1K-18	I K4-2	I K4-2
Houry and Location C R C R C R C I R C R SiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 FeQ0, 3.51 2.80 1.80 3.15 2.83 2.87 3.13 3.17 3.14 3.27 0.29 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.18 0.04 0.07 0.61 0.31 0.77 0.63 0.56 0.76 0.76 0.69 0.63 0.48 0.79 0.49 Cad 2.642 2.92.8 3.469 2.809 30.55 31.02 28.14 28.58 2.50 2.31 1.81 1.81 Nb(0, 2.14 2.75 0.62 0.01 1.22 0.44 0.05 1.30 1.18 1.42 0.81 0.23 0.34 0.15 0.21 0.06 0.00 0.00	Analysis	17/32	17/36	17/37	18/33	18/34	18/38	19/35	19/36	19/39	19/40	19/41	20/37	20/38
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Location	C	C	р	C	р	C	C	р	C	т	р	C	D
Bio2 0.00 <th< td=""><td>SiO</td><td></td><td>0.00</td><td><u> </u></td><td>0.00</td><td><u> </u></td><td>0.00</td><td>0.00</td><td><u> </u></td><td>0.00</td><td>0.25</td><td><u> </u></td><td>0.00</td><td><u> </u></td></th<>	SiO		0.00	<u> </u>	0.00	<u> </u>	0.00	0.00	<u> </u>	0.00	0.25	<u> </u>	0.00	<u> </u>
Tesp() 2.19 1.22 1.09 1.09 1.09 1.04 1.43 1.42 1.40 1.37 1.14 3.27 2.97 3.38 2.57 Sm,O, 0.24 0.27 0.16 0.21 0.20 0.25 0.22 0.21 0.27 0.25 0.26 0.83 0.84 0.83 0.26 0.27 0.83 0.47 0.83 0.47 0.83 0.47 0.83 0.47 0.85 0.97 0.45 0.81 0.82 <td< td=""><td>SIO_2</td><td>0.00</td><td>1.22</td><td>0.00</td><td>0.00</td><td>1.52</td><td>1.64</td><td>0.00</td><td>1.64</td><td>0.00</td><td>0.23</td><td>0.05</td><td>0.00</td><td>1.00</td></td<>	SIO_2	0.00	1.22	0.00	0.00	1.52	1.64	0.00	1.64	0.00	0.23	0.05	0.00	1.00
Lacyol 3.11 2.03 2.03 2.03 3.13 3.13 3.14 3.12 2.97 3.38 2.97 Smi,O 0.77 0.61 0.31 0.77 0.63 0.56 0.76 0.69 0.63 0.48 0.79 0.49 CaO 2642 2928 34.69 28.09 30.58 1.02 2.14 28.58 7.57 2.82 30.49 2.63 1.31 1.65 1.46 SrO 0.80 0.81 0.77 0.72 0.73 0.79 0.78 0.81 0.82 0.77 0.83 0.15 1.20 CrO 0.26 0.27 0.16 0.03 0.15 1.14 0.88 0.23 0.34 0.15 0.20 ThO, 0.95 0.62 0.01 1.12 0.98 40.73 49.75 4.675 48.10 5.03 4.63 5.97 BaO 0.00 0.11 0.12 0.00 0.00 0.00	$1e_2O_3$	2.19	2.80	1.50	2.15	2.92	2.04	2.12	2.17	2.14	2.27	2.07	2.29	1.62
	La_2O_3	0.24	2.80	0.16	0.21	2.05	2.07	0.22	0.21	0.27	0.20	2.97	0.22	2.37
F120 0.71 0.01 0.03 0.70 0.03 0.75 0.75 0.82 0.74 0.75 0.78 0.75 0.78 0.75 0.78 0.75 0.78 0.75 0.78 0.75 0.78 0.71 0.83 0.74 0.82 0.77 0.83 0.74 0.82 0.77 0.83 0.74 0.82 0.77 0.83 0.74 0.82 0.77 0.83 0.74 0.75 0.71 0.83 0.74 0.75 0.74 1.81 0.24 1.18 0.76 0.77 0.83 0.74 1.85 1.74 7.47 7.58 7.61 7.49 6.29 8.11 5.21 Nd.03 2.48 2.29 1.33 1.86 2.14 2.40 0.77 0	$\operatorname{Sin}_2 \operatorname{O}_3$	0.24	0.27	0.10	0.21	0.20	0.23	0.22	0.21	0.27	0.29	0.23	0.22	0.18
Lab 20.14 22.75 1.25 1.02 20.14 2.13 1.25 1.22 2.24 1.38 2.50 2.31 1.65 1.46 SrO 0.80 0.81 0.77 0.72 0.73 0.79 0.78 0.81 0.82 0.23 0.34 0.15 0.20 ThO 0.26 0.27 0.16 0.14 0.10 0.33 0.15 0.14 0.58 0.23 0.34 0.15 0.20 ThO 0.26 0.02 0.01 0.03 0.15 0.14 0.58 0.23 0.34 0.15 0.20 BaO 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.12 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	P_2O_3	0.77	0.01	0.51	0.77	0.05	0.50	0.70	0.70	0.69	0.03	0.48	0.79	0.49
NBO3 2.14 2.73 1.27 1.33 1.02 2.02 1.48 1.30 4.38 2.30 2.31 1.63 0.43 SrO 0.80 0.81 0.77 0.72 0.73 0.71 0.81 0.74 0.82 0.77 0.83 0.74 0.83 0.74 0.83 0.74 0.83 0.74 0.83 0.74 0.83 0.74 0.83 0.74 0.82 0.77 0.83 0.74 0.82 0.77 0.83 0.74 0.82 0.75 1.40 0.82 0.74 4.81 0.24 1.18 0.24 1.18 0.73 0.74 0.89 9.73 9.75 7.61 7.49 6.29 8.11 5.21 Nd,O 2.48 2.29 1.33 1.86 2.14 2.07 2.75 2.26 1.31 1.81 2.17 1.75 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 </td <td>CaO Nh O</td> <td>20.42</td> <td>29.28</td> <td>34.09</td> <td>28.09</td> <td>30.38</td> <td>31.02</td> <td>28.14</td> <td>28.58</td> <td>4 20</td> <td>28.29</td> <td>30.94</td> <td>20.31</td> <td>31.81</td>	CaO Nh O	20.42	29.28	34.09	28.09	30.38	31.02	28.14	28.58	4 20	28.29	30.94	20.31	31.81
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NU_2O_5	2.14	2.75	1.27	1.55	1.02	2.02	1.48	1.50	4.38	2.50	2.31	1.05	1.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	310	0.80	0.81	0.77	0.72	0.75	0.79	0.78	0.81	0.82	0.77	0.85	0.74	0.82
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ZIO_2	0.20	0.27	0.10	0.14	0.10	0.55	0.15	0.14	0.58	0.23	0.34	0.15	0.20
Intog 47.37 49.37 53.00 49.13 51.12 49.78 49.73 49.73 48.10 50.39 48.10 50.39 48.10 50.39 48.10 50.39 48.10 50.39 48.10 50.39 48.10 50.30 0.00 0.12 0.00 0.00 0.01 0.12 0.00 0.00 0.00 0.12 0.00 0.00 0.01 0.12 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 <t< td=""><td></td><td>0.95</td><td>0.02</td><td>0.01 52.00</td><td>1.22</td><td>0.34</td><td>0.03</td><td>1.50</td><td>1.10</td><td>1.42</td><td>0.81</td><td>0.24</td><td>1.10</td><td>0.00</td></t<>		0.95	0.02	0.01 52.00	1.22	0.34	0.03	1.50	1.10	1.42	0.81	0.24	1.10	0.00
bad 0.00 0.11 0.12 0.00 0.12 0.10 0.11 0.12 0.10 0.11 0.12 0.10 0.11 0.12 0.10 0.11 0.12 0.10 0.11 0.10 0.00 1.13 1.14 2.11 1.17 2.50 2.45 2.23 1.31 0.00	IIO_2	47.91	49.57	0.12	49.01	51.12	49.98	49.75	49.75	40.75	48.10	50.39 0.12	48.70	50.97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ga O	0.00	0.11	0.12	0.00	0.00	0.12	0.00	0.00	0.12	0.10	0.12	0.00	0.00
NagO 2.48 2.29 2.31 2.47 2.31 2.43 2.29 2.31 1.91 2.60 1.60 MagO 0.00 0.04 0.03 0.00 0.00 0.04 0.00 0.00 0.06 0.35 0.10 0.00 0.00 0.01 TaJO 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00<	Ce_2O_3	8.20	0.00	5.59	7.04	0.49	5.95	7.74	7.58	7.01	7.49	0.29	8.11	5.21
NgO 2.49 1.29 1.80 2.14 2.07 2.23 1.70 2.04 1.49 MgO 0.00 0.04 0.03 0.00	Nu_2O_3	2.55	2.10	1.13	2.49	2.11	1.79	2.50	2.45	2.29	2.31	1.91	2.00	1.0/
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M_2O	2.48	2.29	1.30	2.09	1.85	1.80	2.14	2.07	2.75	2.25	1.70	2.04	1.40
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MgO	0.00	0.04	0.05	0.00	0.00	0.04	0.00	0.00	0.00	0.55	0.10	0.00	0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AI_2O_3 Tr O	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00
Initial 96.42 97.43 97.43 97.35 97.35 97.36 0.006 0.006 0.006 0.006 0.007 0.001 0.002 0.003 0.004 0.002 0.001 0.001 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 <	$1a_2O_5$	0.00	0.18	0.04	0.00	0.00	0.03	0.00	0.00	0.00	0.17	0.05	0.00	0.00
Si 0.000 0.001 0.002 0.002 0.021 0.021 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.007 0.004 0.002 0.001 0.007 0.007 0.004 0.002 0.001 0.007 0.007 0.002 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.	iotai Si	90.42	99.50	99.74	99.00	99.09	99.30	99.75	99.03	99.00	99.22	0.000	96.10	96. 74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
La 0.033 0.016 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.020 0.002 0.001 0.001 0.001 0.007 0.006 0.002 0.001 0.017 0.015 0.028 0.026 0.021 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.021 0.021 0.021 0.001 0.001 0.001 0.001 0.001 0.001 0.	re Le	0.042	0.025	0.030	0.031	0.028	0.027	0.052	0.031	0.027	0.031	0.028	0.030	0.034
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	La Sm	0.033	0.010	0.020	0.029	0.020	0.029	0.029	0.029	0.030	0.027	0.030	0.052	0.025
F1 0.007 0.003 0.007 0.006 0.007 0.004 0.002 0.011 0.011 0.011 0.012 0.011 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.	Dr	0.002	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.005	0.002	0.002	0.002	0.002
Nb 0.25 0.837 0.837 0.637 0.743 0.745 0.765 0.765 0.765 0.744 0.722 0.837 Nb 0.025 0.011 0.012 0.011 0.011 0.011 0.010 0.011 0.011 0.011 0.012 0.001 0.002 0.002 0.003 0.004 0.003 0.002 0.002 0.003 0.004 0.003 0.002 0.002 0.001 0.003 0.007 0.003 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.001 <th< td=""><td></td><td>0.007</td><td>0.005</td><td>0.005</td><td>0.007</td><td>0.000</td><td>0.000</td><td>0.007</td><td>0.007</td><td>0.000</td><td>0.004</td><td>0.000</td><td>0.007</td><td>0.004</td></th<>		0.007	0.005	0.005	0.007	0.000	0.000	0.007	0.007	0.000	0.004	0.000	0.007	0.004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca	0.725	0.007	0.820	0.739	0.807	0.740	0.730	0.707	0.703	0.809	0.774	0.722	0.037
Si 0.012 0.011 0.011 0.010 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.000 0.000 Th 0.006 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.000 Th 0.023 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 Ce 0.077 0.031 0.054 0.071 0.059 0.071 0.022 0.022 0.021 0.017 0.001 0.001 0.000 0.000 Ce 0.077 0.031 0.054 0.071 0.059 0.071 0.022 0.022 0.021 0.017 0.020 0.024 0.021 Na 0.123 0.063 0.009 0.000 0.000 <t< td=""><td>NU Sr</td><td>0.023</td><td>0.014</td><td>0.025</td><td>0.013</td><td>0.011</td><td>0.030</td><td>0.017</td><td>0.013</td><td>0.028</td><td>0.020</td><td>0.027</td><td>0.019</td><td>0.010</td></t<>	NU Sr	0.023	0.014	0.025	0.013	0.011	0.030	0.017	0.013	0.028	0.020	0.027	0.019	0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 7r	0.012	0.011	0.011	0.010	0.010	0.012	0.011	0.012	0.011	0.012	0.012	0.011	0.012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ZI	0.005	0.002	0.004	0.002	0.001	0.007	0.002	0.002	0.005	0.004	0.003	0.002	0.002
I1 0.923 0.922 0.924 0.947 0.947 0.990 0.938 0.938 0.938 0.911 0.923 0.922 0.940 0.942 Ba 0.000 0.001 0.000 <t< td=""><td>TII Ti</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.007</td><td>0.005</td><td>0.008</td><td>0.007</td><td>0.007</td><td>0.003</td><td>0.001</td><td>0.003</td><td>0.007</td><td>0.000</td></t<>	TII Ti	0.000	0.000	0.000	0.007	0.005	0.008	0.007	0.007	0.003	0.001	0.003	0.007	0.000
Ba 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0	II Pa	0.925	0.932	0.928	0.941	0.947	0.890	0.938	0.938	0.911	0.923	0.922	0.940	0.942
Ce 0.077 0.031 0.034 0.071 0.039 0.070 0.071 0.070 0.063 0.063 0.069 0.076 0.047 Nd 0.023 0.010 0.016 0.022 0.019 0.021 0.022 0.021 0.017 0.020 0.024 0.015 Na 0.123 0.063 0.089 0.102 0.087 0.135 0.104 0.101 0.110 0.017 0.020 0.024 0.015 Mg 0.000 0.001 0.001 0.000	Ба	0.000	0.001	0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.001	0.001	0.000	0.000
Na 0.023 0.010 0.016 0.022 0.017 0.021 0.021 0.021 0.021 0.017 0.020 0.024 0.013 Na 0.123 0.063 0.089 0.102 0.087 0.135 0.104 0.101 0.110 0.017 0.020 0.024 0.013 Mg 0.000 0.001 0.001 0.000 0.000 0.002 0.000 0.000 0.004 0.003 0.000 0.000 Al 0.000	Nd	0.077	0.031	0.034	0.071	0.039	0.070	0.071	0.070	0.009	0.030	0.009	0.070	0.047
Na 0.123 0.003 0.003 0.002 0.007 0.133 0.104 0.101 0.110 0.003 0.103 0.131 0.070 Mg 0.000 0.001 0.001 0.000 <t< td=""><td>Na</td><td>0.025</td><td>0.010</td><td>0.010</td><td>0.022</td><td>0.019</td><td>0.021</td><td>0.022</td><td>0.022</td><td>0.021</td><td>0.017</td><td>0.020</td><td>0.024</td><td>0.013</td></t<>	Na	0.025	0.010	0.010	0.022	0.019	0.021	0.022	0.022	0.021	0.017	0.020	0.024	0.013
Mg 0.000 0.001 0.001 0.001 0.000 0.000 0.002 0.000 0.000 0.001 0.003 0.000 0.000 0.000 Al 0.000 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Ma	0.123	0.003	0.069	0.102	0.087	0.133	0.104	0.101	0.110	0.085	0.103	0.131	0.070
A1 0.000 0.001 0.01 <td>Ivig</td> <td>0.000</td> <td>0.001</td> <td>0.001</td> <td>0.000</td> <td>0.000</td> <td>0.002</td> <td>0.000</td> <td>0.000</td> <td>0.015</td> <td>0.004</td> <td>0.005</td> <td>0.000</td> <td>0.000</td>	Ivig	0.000	0.001	0.001	0.000	0.000	0.002	0.000	0.000	0.015	0.004	0.005	0.000	0.000
Ia0.0000.0010.0010.0110.0110.01 <td>Ta</td> <td>0.000</td>	Ta	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Catolis2.0012.0121.9982.0002.0031.9982.0022.0032.0032.0032.0042.0032.004lueshite0.020.030.010.010.020.020.020.020.050.030.030.020.01loparite0.180.160.100.150.180.140.180.230.180.170.120.110.19REEFeO30.030.020.010.030.030.030.030.030.030.030.030.030.03tausonite0.010.010.010.010.010.010.010.010.010.010.010.01REE_2Ti_2O70.010.010.000.000.000.000.000.010.010.010.010.01Ree_Ti_2O70.010.010.000.000.010.010.010.010.010.010.01Ree_Ti_2O70.010.010.000.000.000.000.000.000.000.010.010.01Ree_Ti_2O70.010.010.000.000.000.000.000.000.000.000.000.00lakargiite0.000.000.000.000.000.000.000.000.000.000.000.00pervskite0.760.760.860.790.750.790.760.710.710.75 <th< td=""><td>Cations</td><td>2 001</td><td>0.000</td><td>2.012</td><td>1.000</td><td>2.000</td><td>2 000</td><td>1.000</td><td>2 002</td><td>2 0001</td><td>2 002</td><td>2.000</td><td>2 002</td><td>2 004</td></th<>	Cations	2 001	0.000	2.012	1.000	2.000	2 000	1.000	2 002	2 0001	2 002	2.000	2 002	2 004
lashle 0.02 0.03 0.01 0.01 0.02 0.02 0.02 0.03 0	Lucshite	2.001	2.013	2.012	0.01	2.000	2.008	0.02	2.002	2.000	2.003	2.000	2.003	2.004
$ioparite0.180.160.100.130.130.140.180.230.180.170.120.110.19REEFeO_30.030.020.010.03$	loparita	0.02	0.05	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.02	0.01
$talla co_3$ 0.05 0.02 0.01 0.03 0.05	REFEAD	0.10	0.10	0.10	0.13	0.10	0.14	0.10	0.23	0.10	0.17	0.12	0.11	0.19
$REE_2Ti_2O_7$ 0.01 0.01	tausovite	0.05	0.02	0.01	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
$k_{LL_2}r_{15}o_7$ 0.01 0.00 0.00 0.01 0.00 0.01 0.00 <th< td=""><td>RFF T; O</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td><td>0.01</td></th<>	RFF T; O	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
managine 0.00	lakaraiita	0.01	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.00	0.00
Fe/Nb 1.70 1.70 1.35 2.00 2.49 0.54 1.88 2.10 0.95 1.22 1.05 1.58 2.07 $ANNO$ $=0.05$ $=3.38$ $=2.71$ $=1.74$ $=1.87$ $=6.97$ $=1.72$ $=1.60$ $=4.31$ $=2.91$ $=3.76$ $=2.32$ $=1.12$	nerovskite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
ANNO -0.05 -3.38 -2.71 -1.74 -1.87 -6.97 -1.72 -1.60 -4.31 -2.91 -3.76 -2.32 -1.12	Fo/Nh	1 70	1 70	1 35	0.79 2 AA	2 10	0.79	1.89	7 10	0.71	1 22	1 05	1.65	0.75 2 07
	ΔNNO	-0.05	-3.38	-2.71	-1.74	-1.87	-6.97	-1.72	-1.60	-4.31	-2.91	-3.76	-2.32	-1.12

Supplementary Material B

Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens. C = core: R = rim: L = intermediate

<i>C</i> -	core; R -	rim; I - in	termedia	te.								
Sample	TR4-2	TR4-2	TR4-2	TR4-2	TR-18	TR4-2	TR4-2	TR4-2	TRIV-5	TRIV-5	TRIV-5	TRIV-5
Grain/	21/20	21/40	22/41	22/42	22/44	22/12	24/45	21/16	25/47	26/40	26/50	27/51
Analysis	21/39	21/40	22/41	22/42	22/44	23/43	24/43	24/40	23/47	20/49	20/30	27/31
Location	C	R	С	R	С	С	С	R	С	С	R	С
SiO_2	0.00	0.00	0.00	0.00	0.00	0.59	0.00	0.00	0.00	0.00	0.00	0.01
Fe_2O_3	1.53	1.57	1.76	1.69	4.00	2.00	1.59	1.48	2.22	1.61	1.56	1.62
La_2O_3	3.14	2.70	2.87	3.08	2.60	3.49	3.46	3.12	2.31	2.99	2.76	1.60
Sm_2O_3	0.20	0.19	0.21	0.19	0.23	0.22	0.24	0.21	0.17	0.21	0.19	0.13
Pr_2O_3	0.76	0.57	0.60	0.66	0.40	0.81	0.86	0.74	0.40	0.66	0.58	0.37
CaO	28.52	30.62	29.92	29.65	29.96	24.76	25.37	28.11	33.13	30.13	31.47	35.40
Nb_2O_5	1.16	0.98	2.03	1.64	1.19	2.39	2.24	1.70	1.10	1.10	1.09	0.45
SrO	0.77	0.72	0.77	0.76	0.73	0.75	0.76	0.70	0.29	0.29	0.25	0.22
ZrO_2	0.12	0.09	0.27	0.19	0.12	0.28	0.21	0.14	0.17	0.11	0.12	0.05
ThO_2	1.13	0.30	0.14	0.13	0.20	2.07	2.46	0.79	0.03	0.21	0.14	0.30
TiO ₂	50.65	50.89	50.34	50.21	49.87	47.47	47.91	49.51	52.12	51.27	52.31	53.85
BaO	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce_2O_3	7.55	5.83	6.55	6.80	5.58	8.48	8.56	7.41	4.45	6.69	6.18	3.38
Nd_2O_3	2.42	1.85	2.08	2.16	1.80	2.66	2.72	2.38	1.33	2.05	1.87	1.20
Na ₂ O	2.20	1.77	2.08	1.99	1.86	2.78	2.84	2.16	1.36	1.88	1.77	0.88
MgO	0.00	0.00	0.00	0.00	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta_2O_5	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.15	98.09	99.61	99.14	98.90	98.75	99.22	98.46	99.09	99.21	100.29	99.45
Si	0.000	0.000	0.000	0.000	0.002	0.015	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.029	0.029	0.033	0.032	0.028	0.039	0.031	0.028	0.040	0.030	0.028	0.029
La	0.029	0.025	0.026	0.028	0.031	0.033	0.033	0.029	0.021	0.027	0.025	0.014
Sm	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.001	0.002	0.002	0.001
Pr	0.007	0.005	0.005	0.006	0.007	0.008	0.008	0.007	0.004	0.006	0.005	0.003
Ca	0.759	0.815	0.791	0.789	0.747	0.680	0.698	0.761	0.858	0.797	0.817	0.902
Nb	0.013	0.011	0.023	0.018	0.019	0.028	0.026	0.019	0.012	0.012	0.012	0.005
Sr	0.011	0.010	0.011	0.011	0.011	0.011	0.011	0.010	0.004	0.004	0.004	0.003
Zr	0.002	0.001	0.003	0.002	0.002	0.003	0.003	0.002	0.002	0.001	0.001	0.001
Th	0.006	0.002	0.001	0.001	0.004	0.012	0.014	0.005	0.000	0.001	0.001	0.002
Ti	0.947	0.951	0.934	0.939	0.935	0.916	0.926	0.941	0.948	0.952	0.954	0.964
Ba	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.069	0.053	0.059	0.062	0.069	0.080	0.081	0.069	0.039	0.060	0.055	0.029
Nd	0.021	0.016	0.018	0.019	0.022	0.024	0.025	0.021	0.011	0.018	0.016	0.010
Na	0.106	0.085	0.099	0.096	0.126	0.138	0.141	0.106	0.064	0.090	0.083	0.040
Mg	0.000	0.000	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	2.001	2.007	2.006	2.005	2.010	1.989	1.999	1.999	2.01	2.001	2.002	2.004
lueshite	0.01	0.02	0.02	0.03	0.02	0.02	0.03	0.02	0.01	0.01	0.01	0.00
loparite	0.15	0.15	0.16	0.22	0.12	0.15	0.23	0.18	0.10	0.16	0.14	0.07
$REEFeO_3$	0.03	0.03	0.03	0.04	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.02
tausonite	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
$REE_2Ti_2O_7$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.80	0.77	0.78	0.69	0.82	0.77	0.69	0.76	0.85	0.79	0.81	0.90
Fe/Nb	2.19	2.68	1.44	1.72	1.42	1.39	1.18	1.45	3.36	2.43	2.39	6.00
<i>∆NNO</i>	-1.98	-1.53	-2.16	-1.90	-3.02	-1.32	-3.07	-2.89	1.09	-1.57	-1.87	-0.85

Supplementary Material B

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C - core: R - rim: L - intermediate

Sample	$\frac{COPE}{TRIV-5}$	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5	TRIV-5
Grain/	11(1)-5	1101 V-5	1101 -5	11(1)-5							11(1)-5
Analysis	27/52	28/53	29/55	30/56	31/58	31/59	32/60	32/61	33/62	33/63	34/64
Location	R	С	R	С	С	R	С	R	С	R	R
SiO ₂	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe_2O_3	1.62	1.78	2.72	1.79	1.57	1.99	1.58	1.74	1.81	1.97	1.85
La_2O_3	1.52	2.65	2.51	3.51	2.92	2.36	2.66	2.38	2.53	2.45	2.90
Sm_2O_3	0.12	0.18	0.15	0.23	0.19	0.16	0.18	0.16	0.18	0.17	0.19
Pr_2O_3	0.33	0.54	0.43	0.80	0.62	0.43	0.58	0.45	0.50	0.46	0.62
CaO	34.86	31.26	32.53	27.31	30.52	33.47	31.43	32.71	32.37	32.75	29.79
Nb_2O_5	0.43	1.07	1.68	1.65	1.00	1.11	0.86	0.87	1.00	1.08	1.19
SrO	0.21	0.27	0.36	0.28	0.29	0.32	0.29	0.28	0.30	0.30	0.29
ZrO_2	0.03	0.16	0.59	0.19	0.10	0.16	0.09	0.09	0.12	0.14	0.15
ThO ₂	0.27	0.05	0.04	0.87	0.34	0.04	0.19	0.04	0.13	0.04	0.13
TiO ₂	53.52	51.74	50.57	49.48	51.46	52.44	52.18	52.15	52.50	51.95	51.03
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce_2O_3	3.31	5.65	4.56	8.21	6.47	4.68	5.87	4.88	5.40	4.90	6.51
Nd_2O_3	1.16	1.78	1.34	2.59	2.08	1.43	1.87	1.52	1.69	1.54	2.03
Na ₂ O	0.96	1.69	1.29	2.38	1.78	1.28	1.68	1.40	1.54	1.39	1.91
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	98.33	98.83	99.99	99.28	99.33	99.86	99.45	98.66	100.07	99.14	98.57
Si	0.000	0.000	0.029	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.029	0.033	0.049	0.034	0.029	0.036	0.029	0.032	0.033	0.036	0.034
La	0.013	0.024	0.022	0.033	0.027	0.021	0.024	0.021	0.023	0.022	0.027
Sm	0.001	0.002	0.001	0.002	0.002	0.001	0.002	0.001	0.002	0.001	0.002
Pr	0.003	0.005	0.004	0.007	0.006	0.004	0.005	0.004	0.004	0.004	0.006
Ca	0.897	0.821	0.835	0.737	0.805	0.862	0.821	0.853	0.837	0.852	0.791
Nb	0.005	0.012	0.018	0.019	0.011	0.012	0.009	0.010	0.011	0.012	0.013
Sr	0.003	0.004	0.005	0.004	0.004	0.005	0.004	0.004	0.004	0.004	0.004
Zr	0.000	0.002	0.007	0.002	0.001	0.002	0.001	0.001	0.001	0.002	0.002
Th	0.001	0.000	0.000	0.005	0.002	0.000	0.001	0.000	0.001	0.000	0.001
Ti	0.967	0.954	0.911	0.938	0.953	0.948	0.957	0.955	0.953	0.949	0.951
Ba	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.029	0.051	0.040	0.076	0.058	0.041	0.052	0.043	0.048	0.044	0.059
Nd	0.010	0.016	0.011	0.023	0.018	0.012	0.016	0.013	0.015	0.013	0.018
Na	0.045	0.080	0.060	0.116	0.085	0.060	0.079	0.066	0.072	0.065	0.092
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	2.004	2.002	1.992	1.997	2.000	2.004	2.002	2.005	2.003	2.004	1.999
lueshite	0.00	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
loparite	0.08	0.14	0.09	0.20	0.15	0.10	0.14	0.11	0.12	0.11	0.16
REEFeO3	0.02	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
tausonite	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$REE_2Ti_2O_7$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lakargiite	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.89	0.82	0.85	0.74	0.80	0.85	0.82	0.84	0.83	0.84	0.79
Fe/Nb	6.33	2.76	2.69	1.81	2.62	2.99	3.07	3.32	3.01	3.03	2.59
<i>∆NNO</i>	-0.76	-0.78	2.48	-1.36	-1.62	-0.01	-1.43	-0.73	-0.65	0.01	-0.54

Supplementary Material B

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C - core: R - rim: L - intermediate

Sample	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3
Grain/	110 / 5 5		11(1 + 5 - 5	1111 0 5 5	11(1 + 5 - 5	11(1 + 5 - 5	11(1 + 5 - 5	11(1 + 5 - 5	11(1 + 5 - 5
Analysis	35/65	35/66	36/67	36/68	37/69	37/70	38/71	38/72	39/73
Location	С	R	С	R	С	R	С	R	R
SiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00
Fe_2O_3	1.79	1.85	1.53	1.81	1.39	1.55	1.90	1.78	1.69
La_2O_3	3.51	3.20	3.41	2.65	2.76	2.15	2.46	2.52	3.70
Sm_2O_3	0.23	0.20	0.23	0.17	0.19	0.15	0.16	0.18	0.24
Pr_2O_3	0.79	0.69	0.78	0.53	0.66	0.41	0.45	0.47	0.84
CaO	27.53	29.41	27.46	32.57	30.25	33.45	32.91	32.71	26.00
Nb_2O_5	1.46	1.33	1.34	1.11	0.86	0.84	1.17	1.09	1.80
SrO	0.26	0.30	0.29	0.28	0.26	0.27	0.28	0.31	0.30
ZrO_2	0.17	0.18	0.14	0.17	0.09	0.10	0.16	0.13	0.24
ThO ₂	0.57	0.21	1.11	0.03	0.63	0.03	0.02	0.04	1.51
TiO ₂	49.56	50.88	49.87	51.92	51.74	52.80	52.01	52.49	48.38
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce_2O_3	7.97	7.12	8.06	5.21	6.71	4.47	4.90	5.18	8.61
Nd_2O_3	2.48	2.23	2.53	1.61	2.15	1.41	1.50	1.65	2.55
Na_2O	2.23	2.07	2.34	1.44	1.88	1.29	1.24	1.45	2.45
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	98.55	99.67	99.08	99.50	99.58	98.93	99.23	99.99	98.30
Si	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Fe	0.034	0.034	0.029	0.033	0.026	0.028	0.035	0.032	0.033
La	0.033	0.029	0.032	0.024	0.025	0.019	0.022	0.022	0.035
Sm	0.002	0.002	0.002	0.001	0.002	0.001	0.001	0.001	0.002
Pr	0.007	0.006	0.007	0.005	0.006	0.004	0.004	0.004	0.008
Ca	0.746	0.778	0.742	0.847	0.797	0.866	0.854	0.845	0.716
Nb	0.017	0.015	0.015	0.012	0.010	0.009	0.013	0.012	0.021
Sr	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.005
Zr	0.002	0.002	0.002	0.002	0.001	0.001	0.002	0.002	0.003
Th	0.003	0.001	0.006	0.000	0.004	0.000	0.000	0.000	0.009
Ti	0.943	0.945	0.946	0.948	0.957	0.959	0.948	0.952	0.935
Ba	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.074	0.064	0.074	0.046	0.060	0.040	0.043	0.046	0.081
Nd	0.022	0.020	0.023	0.014	0.019	0.012	0.013	0.014	0.023
Na	0.109	0.099	0.114	0.068	0.090	0.060	0.058	0.068	0.122
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	1.996	2.001	1.997	2.004	2.000	2.004	1.999	2.002	1.992
lueshite	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.02
loparite	0.19	0.17	0.20	0.11	0.16	0.10	0.09	0.11	0.21
<i>REEFeO</i> ₃	0.03	0.03	0.03	0.03	0.03	0.02	0.03	0.03	0.03
tausonite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$REE_2Ti_2O_7$	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.75	0.77	0.74	0.84	0.79	0.86	0.85	0.84	0.72
Fe/Nb	2.04	2.31	1.90	2.70	2.70	3.08	2.69	2.71	1.56
<i>∆NNO</i>	-1.07	-0.76	-2.16	-0.77	-2.27	-1.60	-0.45	-0.92	-1.95

Supplementary Material B

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C - core: R - rim: I - intermediate.

Sample	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3	TRIV-5-3
Grain/	39/7/	<i>A</i> 1/77	12/78	12/79	13/80	15/83	16/81	17/86	17/87
Analysis	37/14	41///	42/70	72/17	HJ/00	-J/0J	+0/0+	+7/00	+//0/
Location	C	С	С	R	С	R	С	С	R
SiO_2	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00
Fe_2O_3	1.16	1.96	1.62	1.60	1.64	1.41	1.53	1.19	1.37
La_2O_3	1.44	3.04	3.45	3.21	3.20	2.62	3.27	2.54	1.79
Sm_2O_3	0.12	0.19	0.23	0.21	0.22	0.17	0.21	0.19	0.14
Pr_2O_3	0.32	0.59	0.77	0.68	0.69	0.59	0.73	0.65	0.33
CaO	35.44	30.76	27.75	28.90	29.05	32.31	28.41	30.55	34.34
Nb_2O_5	0.66	1.54	1.51	1.30	1.13	0.78	1.12	0.78	0.75
SrO	0.24	0.36	0.30	0.30	0.28	0.31	0.31	0.27	0.26
ZrO_2	0.05	0.29	0.13	0.13	0.13	0.08	0.10	0.07	0.06
ThO ₂	0.12	0.07	0.76	0.33	0.27	0.40	0.89	0.99	0.04
TiO ₂	55.05	50.35	49.82	50.88	50.48	52.09	50.15	52.34	53.14
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce_2O_3	3.08	6.26	7.89	7.33	7.12	5.97	7.65	6.51	3.54
Nd_2O_3	0.99	1.90	2.43	2.30	2.23	1.94	2.37	2.16	1.10
Na_2O	1.21	1.52	2.23	2.23	2.00	1.48	2.17	1.92	1.16
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.86	98.83	98.93	99.40	98.43	100.16	98.90	100.16	98.00
Si	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.020	0.037	0.031	0.030	0.031	0.026	0.029	0.022	0.025
La	0.012	0.028	0.032	0.029	0.030	0.023	0.030	0.023	0.016
Sm	0.001	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.001
Pr	0.003	0.005	0.007	0.006	0.006	0.005	0.007	0.006	0.003
Ca	0.893	0.816	0.748	0.768	0.779	0.841	0.764	0.799	0.888
Nb	0.007	0.017	0.017	0.015	0.013	0.009	0.013	0.009	0.008
Sr	0.003	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.004
Zr	0.001	0.003	0.002	0.002	0.002	0.001	0.001	0.001	0.001
Th	0.001	0.000	0.004	0.002	0.002	0.002	0.005	0.005	0.000
Ti D	0.974	0.937	0.943	0.950	0.950	0.952	0.947	0.962	0.965
Ва	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.027	0.057	0.073	0.067	0.065	0.053	0.070	0.058	0.031
Nd	0.008	0.017	0.022	0.020	0.020	0.017	0.021	0.019	0.009
Na	0.055	0.073	0.109	0.107	0.097	0.070	0.106	0.091	0.054
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	2.006	1.997	1.995	2.002	1.999	2.004	2.000	2.000	2.006
lueshite	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01
<i>ioparite</i>	0.10	0.11	0.19	0.19	0.17	0.12	0.19	0.17	0.09
REEFeO3	0.00	0.04	0.03	0.03	0.03	0.03	0.03	0.02	0.01
tausonite	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$KEE_2II_2O_7$	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.89	0.82	0.75	0.76	0.78	0.83	0.76	0.80	0.88
1 e/IND	2.95	2.12	1.79	2.04	2.42	5.05	2.27	2.55	3.05
<i>DIVINU</i>	-3.20	-0.53	-1.98	-1.80	-1.3/	-2.12	-1.80	-3.09	-2.30

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C
 core: P
 rim: L
 intermediate

<i>C</i> -	core; R - rim	; I - intermed	liate.									-	
Sample	TRIV-5-3	TRIV-5-3	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2
Grain/	10/80	/0/00	01/01	01/02	02/03	02/04	03/05	03/06	04/07	04/08	05/09	05/10	06/11
Analysis	47/07	ч <i>)/)</i> 0	01/01	01/02	02/03	02/04	05/05	03/00	04/07	04/00	05/07	05/10	00/11
Location	С	R	R	С	С	R	С	R	С	R	С	R	С
SiO_2	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe_2O_3	1.59	1.97	2.07	1.97	2.05	2.10	1.93	1.93	1.46	1.33	1.82	1.81	1.49
La_2O_3	2.86	2.51	1.21	1.05	0.93	0.90	1.24	1.20	1.49	1.34	1.59	1.51	1.27
Sm_2O_3	0.18	0.17	0.16	0.13	0.11	0.10	0.16	0.16	0.24	0.18	0.21	0.21	0.18
Pr_2O_3	0.58	0.47	0.37	0.31	0.24	0.24	0.40	0.39	0.59	0.39	0.51	0.47	0.39
CaO	31.08	32.44	35.99	36.91	37.84	37.95	35.87	36.14	33.14	35.43	34.19	34.52	35.34
Nb_2O_5	1.13	1.28	0.44	0.35	0.42	0.45	0.45	0.42	1.21	1.06	1.28	1.15	1.12
SrO	0.30	0.31	0.41	0.43	0.49	0.46	0.41	0.43	0.35	0.38	0.39	0.37	0.37
ZrO_2	0.13	0.20	0.09	0.08	0.09	0.11	0.08	0.09	0.15	0.16	0.28	0.25	0.18
ThO_2	0.22	0.05	0.35	0.21	0.07	0.09	0.45	0.39	0.97	0.05	0.21	0.30	0.08
TiO ₂	51.95	50.94	52.48	53.17	53.76	53.86	52.98	53.14	52.12	53.36	52.26	52.13	53.20
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce_2O_3	6.11	4.85	3.29	2.85	2.16	2.11	3.46	3.38	4.86	3.63	4.46	4.18	3.50
Nd_2O_3	1.97	1.49	1.41	1.22	0.87	0.83	1.52	1.50	2.22	1.48	1.90	1.82	1.49
Na ₂ O	1.72	1.34	0.48	0.40	0.27	0.28	0.52	0.52	1.08	0.81	0.83	0.76	0.80
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.82	98.09	98.75	99.06	99.32	99.49	99.47	99.69	99.87	99.61	99.93	99.48	99.40
Si	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.029	0.036	0.037	0.035	0.036	0.037	0.035	0.035	0.027	0.024	0.033	0.033	0.027
La	0.026	0.023	0.011	0.009	0.008	0.008	0.011	0.011	0.013	0.012	0.014	0.013	0.011
Sm	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002
Pr	0.005	0.004	0.003	0.003	0.002	0.002	0.003	0.003	0.005	0.003	0.005	0.004	0.003
Ca	0.812	0.854	0.927	0.941	0.956	0.956	0.918	0.922	0.860	0.904	0.880	0.891	0.903
Nb	0.012	0.014	0.005	0.004	0.005	0.005	0.005	0.004	0.013	0.011	0.014	0.012	0.012
Sr	0.004	0.004	0.006	0.006	0.007	0.006	0.006	0.006	0.005	0.005	0.005	0.005	0.005
Zr	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.002
Th	0.001	0.000	0.002	0.001	0.000	0.000	0.002	0.002	0.005	0.000	0.001	0.002	0.000
Ti	0.953	0.942	0.949	0.952	0.953	0.953	0.952	0.952	0.949	0.956	0.944	0.944	0.955
Ba	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.055	0.044	0.029	0.025	0.019	0.018	0.030	0.029	0.043	0.032	0.039	0.037	0.031
Nd	0.017	0.013	0.012	0.010	0.007	0.007	0.013	0.013	0.019	0.013	0.016	0.016	0.013
Na	0.081	0.064	0.022	0.019	0.013	0.013	0.024	0.024	0.051	0.037	0.039	0.036	0.037
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	1.999	2.004	2.005	2.008	2.008	2.008	2.002	2.004	1.994	2.001	1.995	1.998	2.000
lueshite	0.01	0.01	0.00	0.00	0.00	-0.01	0.00	-0.01	0.01	-0.01	0.01	-0.01	0.01
loparite	0.14	0.10	0.04	0.03	0.02	0.02	0.04	0.04	0.08	0.05	0.05	0.05	0.05
<i>REEFeO</i> ₃	0.03	0.04	0.04	0.03	0.03	0.03	0.04	0.03	0.03	0.02	0.03	0.03	0.03
tausonite	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01
$REE_2Ti_2O_7$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.81	0.84	0.91	0.93	0.94	0.94	0.91	0.91	0.87	0.90	0.88	0.89	0.90
Fe/Nb	2.35	2.57	7.83	9.30	8.07	7.74	7.17	7.69	2.01	2.09	2.37	2.63	2.22
<i>∆NNO</i>	-1.76	-0.17	1.26	0.85	1.03	1.19	0.57	0.59	-2.50	-2.95	-1.01	-0.86	-2.32

Supplementary Material B

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

<i>C</i> -	core; R ·	- rim; I -	interme	diate.									
Sample	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM-2	LM3-1	LM3-1	LM3-1	LM3-1
Grain/	06/12	07/13	07/14	08/15	08/16	09/17	09/18	10/19	10/20	11/21	11/22	12/23	12/24
Location	R	С	R	С	R	С	R	С	R	С	R	С	R
SiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ₂ O ₂	1.76	1.28	1 38	1.58	1 48	1.96	1.96	1.92	1.91	1 24	1 24	1.98	2.01
La_2O_3	1.70	1.20	0.94	1.56	1.10	1.50	1.50	1.52	1.09	1.21	1.21	1.50	1.07
Sm ₂ O ₂	0.21	0.21	0.12	0.21	0.17	0.14	0.14	0.15	0.14	0.24	0.20	0.17	0.14
Pr ₂ O ₂	0.21	0.21	0.12	0.21	0.17	0.14	0.14	0.15	0.14	0.24	0.20	0.17	0.14
	32 72	35 13	36.99	33.86	35 52	36 71	36.55	36.50	36.86	32.98	34 55	36.15	36.48
Nh ₂ O ₄	1 32	0.67	0.56	1.56	1.03	0.43	0.42	0.42	0.42	1 29	0.97	0.41	0.42
SrO	0.35	0.34	0.35	0.39	0.30	0.42	0.12	0.12	0.42	0.37	0.38	0.43	0.12
ZrO.	1 29	0.31	0.55	0.59	0.20	0.02	0.17	0.12	0.12	0.13	0.11	0.10	0.08
	0.33	0.15	0.10	0.10	0.20	0.00	0.10	0.10	0.10	0.13	0.53	0.10	0.00
TiO ₂	51.27	52.96	54 10	51 78	53 13	53.00	53.01	53.07	53 11	51 64	52 43	52 78	53.06
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CeoO	4.12	3.82	2 41	0.00 4 44	3 21	2.90	3.08	2.91	2.83	4.93	3.96	3 23	2.84
Nd ₂ O ₃	1.12	1 79	1.00	1.81	1.27	1.25	1 30	1.23	1.21	2.23	1 78	1 42	1 21
Na ₂ O	1.01	0.74	0.52	0.99	0.78	0.41	0.46	0.42	0.44	1.07	0.87	0.49	0.42
MgO	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al ₂ O ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta ₂ O ₅	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	98.04	99.18	98.82	98.97	98.74	99.02	99.30	98.82	99.03	99.10	98.80	99.09	98.72
Si	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.032	0.023	0.025	0.029	0.027	0.035	0.035	0.035	0.034	0.000	0.023	0.036	0.036
La	0.032	0.011	0.008	0.015	0.011	0.010	0.010	0.010	0.010	0.023	0.012	0.010	0.009
Sm	0.002	0.002	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.001
Pr	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.002	0.005	0.002	0.003	0.003
Са	0.858	0.001	0.939	0.879	0.000	0.938	0.003	0.003	0.002	0.863	0.895	0.005	0.005
Nb	0.015	0.007	0.006	0.017	0.011	0.005	0.005	0.005	0.004	0.014	0.011	0.004	0.004
Sr	0.005	0.005	0.005	0.005	0.004	0.006	0.006	0.006	0.006	0.005	0.005	0.006	0.006
Zr	0.015	0.001	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001
Th	0.002	0.003	0.000	0.000	0.000	0.001	0.002	0.001	0.001	0.005	0.003	0.002	0.001
Ti	0.944	0.957	0.964	0.944	0.956	0.951	0.951	0.954	0.952	0.949	0.954	0.951	0.954
Ba	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.037	0.034	0.021	0.039	0.028	0.025	0.027	0.025	0.025	0.044	0.035	0.028	0.025
Nd	0.015	0.015	0.008	0.016	0.011	0.011	0.011	0.010	0.010	0.019	0.015	0.012	0.010
Na	0.048	0.035	0.024	0.047	0.036	0.019	0.021	0.019	0.020	0.051	0.041	0.023	0.020
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	1.989	2.001	2.004	1.999	2.002	2.007	2.007	2.004	2.008	1.995	2.001	2.006	2.005
lueshite	-0.02	0.01	-0.02	0.02	-0.02	0.00	-0.03	0.00	-0.03	0.01	-0.03	0.00	-0.04
loparite	0.07	0.06	0.04	0.06	0.05	0.03	0.03	0.03	0.03	0.07	0.06	0.04	0.03
REEFeO₃	0.03	0.02	0.02	0.03	0.03	0.04	0.04	0.03	0.03	0.02	0.02	0.04	0.03
tausonite	0.01	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
REE,Ti,O7	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00
lakargiite	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.86	0.90	0.93	0.88	0.90	0.92	0.92	0.92	0.92	0.87	0.89	0.91	0.92
Fe/Nb	2.23	3.14	4.08	1.69	2.40	7.63	7.73	7.54	7.65	1.60	2.15	8.08	8.06
ANNO	-1.22	-2.65	-2.10	-2.43	-2.23	0.72	0.72	0.56	0.50	-3.58	-3.15	0.87	0.97

Supplementary Material B

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

<u> </u>	<i>core; R</i> - <i>i</i>	rim; I - ini	termediate	2.	* > /2 /		* > /2 /	* * * * *	* > /2 0	* > /2 0	* > /2 0	
Sample	LM3-1	LM3-1	LM3-1	LM3-1	LM3-1	LM3-1	LM3-1	LM3-2	LM3-2	LM3-2	LM3-2	LM3-2
Grain/	13/26	14/27	15/28	16/29	16/30	17/31	17/32	18/33	18/34	18/35	19/36	19/37
Location	R	R	C	C	R	C	R	C	I	R	C	I
SiO	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe ₂ O ₂	1 47	1 53	1 40	1 48	1.50	2.37	2.27	1 44	1 51	1 73	1 41	1 32
La_2O_2	1.17	1.33	1.10	1.10	1.20	1.04	1.04	1 30	1.37	0.95	1.11	1.02
Sm_2O_2	0.17	0.12	0.17	0.22	0.21	0.13	0.12	0.20	0.22	0.14	0.20	0.16
Pr_2O_2	0.38	0.21	0.39	0.49	0.21	0.13	0.32	0.46	0.51	0.25	0.46	0.33
CaO	35.66	36 71	35.89	34 32	34.09	36 58	36.63	34 79	34.06	37.18	34 47	36.25
Nh ₂ O ₆	0.73	1 22	1.08	0.75	0.92	0.33	0.42	0.88	0.91	0.65	0.92	0.64
SrO	0.75	0.37	0.34	0.36	0.35	0.35	0.47	0.36	0.36	0.37	0.33	0.34
ZrO ₂	0.19	0.28	0.14	0.18	0.55	0.08	0.11	0.17	0.18	0.21	0.14	0.12
ThO_2	0.17	0.00	0.11	0.77	0.79	0.00	0.20	0.32	0.72	0.03	0.75	0.12
TiO	52.85	53 73	53 48	52.40	52.37	52.87	52.89	53 10	52.82	54 04	52.64	54 07
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce ₂ O ₂	3 22	2.19	3 33	4 17	3 99	2.91	2.67	3 95	4 36	2.33	3.89	3.00
Nd_2O_2	1 43	0.78	1 45	1 91	1.88	1.23	1.08	1 78	2.01	0.96	1 79	1 35
Na ₂ O	0.72	0.61	0.65	0.85	0.79	0.36	0.34	0.87	0.96	0.54	0.87	0.68
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta ₂ O ₅	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	98.50	98.84	99.85	99.25	98.81	98.96	98.57	99.62	99.99	99.39	99.10	99.46
Si	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.027	0.027	0.025	0.027	0.027	0.043	0.041	0.026	0.027	0.031	0.026	0.024
La	0.010	0.010	0.011	0.012	0.011	0.009	0.009	0.011	0.012	0.008	0.011	0.009
Sm	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.002	0.002	0.001	0.002	0.001
Pr	0.003	0.002	0.003	0.004	0.004	0.003	0.003	0.004	0.005	0.002	0.004	0.003
Ca	0.918	0.931	0.913	0.889	0.885	0.935	0.938	0.892	0.876	0.939	0.891	0.920
Nb	0.008	0.013	0.012	0.008	0.010	0.004	0.005	0.010	0.010	0.007	0.010	0.007
Sr	0.005	0.005	0.005	0.005	0.005	0.006	0.007	0.005	0.005	0.005	0.005	0.005
Zr	0.002	0.003	0.002	0.002	0.002	0.001	0.001	0.002	0.002	0.002	0.002	0.001
Th	0.001	0.000	0.002	0.004	0.004	0.002	0.001	0.002	0.004	0.000	0.004	0.001
Ti	0.955	0.957	0.955	0.953	0.955	0.949	0.951	0.956	0.954	0.958	0.955	0.963
Ва	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.028	0.019	0.029	0.037	0.035	0.025	0.023	0.035	0.038	0.020	0.034	0.026
Nd	0.012	0.007	0.012	0.016	0.016	0.010	0.009	0.015	0.017	0.008	0.015	0.011
Na	0.034	0.028	0.030	0.040	0.037	0.017	0.016	0.040	0.045	0.025	0.041	0.031
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	2.005	2.002	1.998	1.999	1.994	2.005	2.005	2.000	1.997	2.006	1.999	2.003
lueshite	-0.04	-0.04	0.01	0.01	-0.05	0.00	-0.05	0.01	0.01	-0.05	0.01	0.01
loparite	0.05	0.03	0.04	0.06	0.05	0.03	0.02	0.06	0.07	0.04	0.06	0.05
<i>REEFeO</i> ₃	0.03	0.02	0.03	0.03	0.03	0.04	0.03	0.03	0.03	0.02	0.03	0.02
tausonite	0.01	0.01	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.00
$REE_2Ti_2O_7$	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.00
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.90	0.93	0.91	0.89	0.89	0.93	0.93	0.89	0.88	0.93	0.89	0.91
Fe/Nb	3.37	2.08	2.15	3.30	2.70	11.80	9.07	2.72	2.77	4.40	2.55	3.45
ANNO	-1.84	-2.32	-2.72	-1.79	-1.93	2.69	2.14	-2.21	-1.91	-0.70	-2.36	-2.45

Supplementary Material B

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C - core: R - rim: L - intermediate

<u> </u>	$\frac{core}{1 M_2 2}$	$\frac{r_{lm}; 1 - ln_l}{1 M_2 2}$	I M3 2	<u>.</u> 1 M3 2	I M3 2	I M3 2	I M3 2	I MIC1				
Grain/	LIV13-2	L1v13-2	LIV13-2	LIVIJ-2	LIV13-2	LIVI3-2	LIVI3-2	LIVITCI	LIVITCI	LIVILUI	LIVITCI	LIVITCI
Analysis	19/38	19/39	19/40	20/41	20/42	21/45	21/46	29/58	30/60	30/61	31/62	31/63
Location	Ι	Ι	R	С	R	С	R	С	С	R	R	С
SiO ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe_2O_3	1.32	1.39	1.55	2.41	1.39	1.54	1.89	1.39	2.04	1.22	1.36	1.31
La_2O_3	1.11	1.17	0.92	1.31	1.26	1.25	0.94	1.69	1.52	1.00	1.27	1.40
Sm_2O_3	0.19	0.18	0.13	0.18	0.18	0.18	0.11	0.22	0.23	0.12	0.21	0.24
Pr_2O_3	0.38	0.38	0.25	0.39	0.41	0.37	0.21	0.59	0.51	0.25	0.50	0.53
CaO	36.02	36.00	37.42	34.93	35.52	35.78	37.18	33.53	34.17	37.16	34.90	33.92
Nb_2O_5	0.62	0.63	0.60	1.02	1.10	1.11	0.71	1.11	1.50	0.63	0.63	0.72
SrO	0.35	0.32	0.35	0.35	0.36	0.36	0.38	0.14	0.12	0.13	0.12	0.13
ZrO_2	0.11	0.12	0.19	0.14	0.16	0.26	0.24	0.14	0.34	0.16	0.15	0.14
ThO ₂	0.23	0.28	0.02	0.05	0.17	0.08	0.01	0.28	0.42	0.09	0.57	1.09
TiO ₂	53.87	53.87	55.10	53.22	54.02	53.36	54.66	52.57	51.79	54.51	53.90	52.71
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce_2O_3	3.26	3.38	2.27	3.51	3.63	3.39	2.11	4.99	4.43	2.25	4.10	4.45
Nd_2O_3	1.50	1.54	0.92	1.53	1.58	1.45	0.81	2.17	1.88	0.83	1.90	2.09
Na_2O	0.68	0.75	0.50	0.89	0.88	0.78	0.56	0.99	0.83	0.58	0.81	0.92
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.65	100.00	100.22	99.92	100.68	99.92	99.79	99.81	99.78	98.94	100.41	99.65
Si	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.024	0.025	0.027	0.043	0.025	0.027	0.033	0.025	0.037	0.022	0.024	0.024
La	0.010	0.010	0.008	0.011	0.011	0.011	0.008	0.015	0.013	0.009	0.011	0.012
Sm	0.002	0.002	0.001	0.001	0.002	0.001	0.001	0.002	0.002	0.001	0.002	0.002
Pr	0.003	0.003	0.002	0.003	0.004	0.003	0.002	0.005	0.005	0.002	0.004	0.005
Ca	0.916	0.913	0.934	0.888	0.897	0.909	0.932	0.866	0.881	0.939	0.888	0.877
Nb	0.007	0.007	0.006	0.011	0.012	0.012	0.007	0.012	0.016	0.007	0.007	0.008
Sr	0.005	0.004	0.005	0.005	0.005	0.005	0.005	0.002	0.002	0.002	0.002	0.002
Zr	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.002	0.004	0.002	0.002	0.002
Th	0.001	0.002	0.000	0.000	0.001	0.000	0.000	0.002	0.002	0.000	0.003	0.006
Ti	0.962	0.960	0.966	0.950	0.958	0.952	0.962	0.954	0.938	0.967	0.963	0.957
Ba	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.028	0.029	0.019	0.031	0.031	0.029	0.018	0.044	0.039	0.019	0.036	0.039
Nd	0.013	0.013	0.008	0.013	0.013	0.012	0.007	0.019	0.016	0.007	0.016	0.018
Na	0.031	0.034	0.023	0.041	0.040	0.036	0.025	0.046	0.039	0.027	0.037	0.043
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	2.002	2.004	2.001	2.000	2.000	2.002	2.003	1.993	1.995	2.004	1.994	1.995
lueshite	0.00	0.00	-0.05	0.01	-0.06	0.01	-0.06	0.01	0.02	-0.06	-0.07	0.01
loparite	0.05	0.06	0.03	0.06	0.06	0.05	0.04	0.07	0.05	0.04	0.06	0.07
REEFeO ₃	0.02	0.02	0.02	0.03	0.02	0.03	0.02	0.03	0.04	0.02	0.02	0.02
tausonite	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00
$REE_2Ti_2O_7$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.91	0.90	0.93	0.89	0.90	0.90	0.93	0.88	0.89	0.93	0.90	0.88
Fe/Nb	3.54	3.69	4.31	3.94	2.10	2.31	4.46	2.09	2.26	3.23	3.59	3.02
ANNO	-2.43	-2.16	-1.49	1.90	-2.79	-2.12	-0.12	-2.69	-0.30	-2.91	-2.27	-2.53

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C - core: R - rim: I - intermediate.

Sample	LMIC2										
Grain/	11/00	11/00	12/80	12/00	42/01	44/02	44/04	45/05	15/06	45/07	15/08
Analysis	41/00	41/00	42/09	42/90	42/91	44/93	44/94	43/93	43/90	43/97	43/90
Location	С	R	С	R	R	С	R	С	R	С	R
SiO_2	0.00	0.01	0.01	0.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe_2O_3	1.36	1.71	1.48	1.57	1.63	1.43	1.38	1.55	1.56	1.32	1.53
La_2O_3	1.16	0.91	0.87	0.90	0.90	1.46	1.22	1.78	1.71	1.54	1.67
Sm_2O_3	0.17	0.10	0.11	0.12	0.10	0.23	0.20	0.25	0.22	0.22	0.20
Pr_2O_3	0.37	0.19	0.24	0.23	0.21	0.56	0.45	0.64	0.50	0.54	0.48
CaO	36.18	38.10	37.71	36.68	38.29	34.02	35.11	33.01	33.85	34.08	34.41
Nb_2O_5	0.52	0.60	0.43	0.48	0.51	0.64	0.56	1.40	1.13	1.09	1.09
SrO	0.15	0.13	0.15	0.10	0.13	0.15	0.13	0.16	0.14	0.13	0.16
ZrO_2	0.11	0.32	0.14	0.15	0.19	0.12	0.11	0.14	0.17	0.11	0.16
ThO_2	0.16	0.00	0.00	0.00	0.00	1.13	0.43	0.37	0.03	0.36	0.01
TiO ₂	54.14	54.47	54.61	53.89	55.43	53.04	53.43	52.12	52.05	53.02	52.61
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce_2O_3	3.29	1.95	2.00	2.16	1.98	4.64	3.82	5.30	4.58	4.53	4.43
Nd_2O_3	1.45	0.75	0.81	0.85	0.74	2.12	1.72	2.27	1.82	1.91	1.79
Na ₂ O	0.67	0.40	0.39	0.44	0.40	0.98	0.81	1.08	1.01	1.06	0.99
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.73	99.63	98.96	98.13	100.51	100.54	99.38	100.08	98. 77	99.91	99.52
Si	0.000	0.000	0.000	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.024	0.030	0.026	0.028	0.028	0.026	0.025	0.028	0.028	0.024	0.028
La	0.010	0.008	0.008	0.008	0.008	0.013	0.011	0.016	0.015	0.014	0.015
Sm	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002
Pr	0.003	0.002	0.002	0.002	0.002	0.005	0.004	0.006	0.004	0.005	0.004
Ca	0.917	0.954	0.950	0.930	0.949	0.874	0.900	0.855	0.880	0.875	0.886
Nb	0.006	0.006	0.005	0.005	0.005	0.007	0.006	0.015	0.012	0.012	0.012
Sr	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Zr	0.001	0.004	0.002	0.002	0.002	0.001	0.001	0.002	0.002	0.001	0.002
Th	0.001	0.000	0.000	0.000	0.000	0.006	0.002	0.002	0.000	0.002	0.000
Ti	0.964	0.958	0.966	0.959	0.965	0.956	0.962	0.947	0.950	0.956	0.951
Ba	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.029	0.017	0.017	0.019	0.017	0.041	0.033	0.047	0.041	0.040	0.039
Nd	0.012	0.006	0.007	0.007	0.006	0.018	0.015	0.020	0.016	0.016	0.015
Na	0.031	0.018	0.018	0.020	0.018	0.045	0.038	0.051	0.047	0.049	0.046
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	2.001	2.006	2.004	1.996	2.003	1.996	2.000	1.992	2.000	1.998	2.001
lueshite	0.01	-0.07	0.00	-0.07	-0.08	0.01	-0.08	0.02	-0.08	0.01	-0.09
loparite	0.05	0.02	0.03	0.03	0.03	0.08	0.06	0.07	0.07	0.08	0.07
REEFeO₃	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.02	0.03
tausonite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$REE_2Ti_2O_7$	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.91	0.94	0.94	0.94	0.94	0.88	0.90	0.87	0.88	0.88	0.88
Fe/Nb ANNO	4.30 -2.17	4.72 -0.78	5.69 -1.53	5.44 -1.15	5.35 -1.07	3.71 -1.92	4.11 -2.05	1.84 -2.37	2.30 -1.93	2.02 -3.03	2.34 -2.06

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C - core: R - rim: I - intermediate.

Sample	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2
Grain/	46/100	16/00	47/101	47/102	/8/103	48/104	/0/105	/0/106	50/107	50/108	51/109
Analysis	40/100	40/99	4//101	4//102	40/105	+0/10+	47/105	49/100	50/107	50/100	51/107
Location	R	С	С	R	С	R	С	R	С	R	С
S1O ₂	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.09	0.04	0.00
Fe_2O_3	1.41	1.31	1.62	1.95	1.50	1.50	1.59	1.77	1.69	1.75	1.34
La_2O_3	0.98	1.27	1.30	1.15	1.37	1.10	1.21	0.85	1.26	0.98	1.22
Sm_2O_3	0.15	0.21	0.18	0.15	0.22	0.17	0.20	0.09	0.21	0.12	0.19
Pr_2O_3	0.31	0.48	0.43	0.30	0.49	0.37	0.46	0.18	0.49	0.27	0.45
CaO	37.06	34.54	35.37	36.39	34.94	36.73	35.07	38.22	34.38	37.20	35.65
Nb ₂ O ₅	0.43	0.53	0.85	0.83	0.65	0.56	0.86	0.51	0.65	0.54	0.55
SrO	0.14	0.13	0.14	0.12	0.13	0.13	0.13	0.13	0.18	0.14	0.12
ZrO_2	0.12	0.09	0.17	0.34	0.15	0.16	0.19	0.31	0.27	0.26	0.14
ThO ₂	0.07	0.66	0.04	0.10	0.49	0.06	0.53	0.01	0.90	0.07	0.19
T_1O_2	54.98	53.52	53.08	52.98	53.40	54.61	52.76	54.40	52.37	54.02	53.92
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce_2O_3	2.69	3.97	3.54	2.79	4.21	3.09	3.67	1.68	4.19	2.40	3.54
Nd_2O_3	1.15	1.85	1.48	1.06	1.85	1.31	1.68	0.63	1.88	1.00	1.59
Na_2O	0.57	0.82	0.68	0.53	0.83	0.64	0.77	0.35	0.90	0.57	0.73
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta ₂ O ₅	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	100.06	99.37	98.89	98.69	100.23	100.42	99.13	99.18	99.47	99.36	99.63
Si	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.001	0.000
Fe	0.025	0.024	0.029	0.035	0.027	0.026	0.029	0.031	0.031	0.031	0.024
La	0.008	0.011	0.011	0.010	0.012	0.009	0.011	0.007	0.011	0.009	0.011
Sm	0.001	0.002	0.001	0.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002
Pr	0.003	0.004	0.004	0.003	0.004	0.003	0.004	0.002	0.004	0.002	0.004
Ca	0.929	0.887	0.908	0.930	0.892	0.922	0.902	0.959	0.888	0.939	0.907
Nb	0.005	0.006	0.009	0.009	0.007	0.006	0.009	0.005	0.007	0.006	0.006
Sr	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.002
Zr	0.001	0.001	0.002	0.004	0.002	0.002	0.002	0.004	0.003	0.003	0.002
Th	0.000	0.004	0.000	0.001	0.003	0.000	0.003	0.000	0.005	0.000	0.001
Ti	0.968	0.965	0.956	0.951	0.957	0.963	0.953	0.959	0.949	0.957	0.964
Ba	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.023	0.035	0.031	0.024	0.037	0.027	0.032	0.014	0.037	0.021	0.031
Nd	0.010	0.016	0.013	0.009	0.016	0.011	0.014	0.005	0.016	0.008	0.013
Na	0.026	0.038	0.032	0.024	0.038	0.029	0.036	0.016	0.042	0.026	0.034
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Та	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cations	2.001	1.995	1.999	2.002	1.998	2.002	2.000	2.006	2.000	2.007	1.999
lueshite	-0.09	0.01	0.01	-0.09	0.01	-0.09	0.01	-0.10	0.01	-0.10	0.01
loparite	0.04	0.07	0.05	0.03	0.06	0.05	0.05	0.02	0.07	0.04	0.06
REEFeO₃	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.02	0.03	0.02	0.02
tausonite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$REE_2Ti_2O_7$	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
lakargiite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskite	0.93	0.90	0.91	0.92	0.89	0.92	0.90	0.95	0.88	0.93	0.91
Fe/Nb	5.46	4.16	3.18	3.89	3.82	4.49	3.09	5.73	4.30	5.42	4.08
∆NNO	-1.88	-2.28	-1.35	0.13	-1.66	-1.62	-1.48	-0.38	-0.73	-0.46	-2.25

 Table B4. Major element compositions of perovskite from TR-IV LM-I. Structural formula calculated on the basis of 4 oxigens.

 C - core: R - rim: I - intermediate

Sample	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2	LMIC2
Grain/	51/110	52/111	52/112	52/112	52/11/	54/116	54/117	54/110	55/120	57/100
Analysis	51/110	32/111	32/112	33/113	33/114	54/110	34/11/	34/119	55/120	57/122
Location	R	С	R	С	R	R	С	С	С	С
SiO_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
Fe_2O_3	1.34	1.38	1.34	1.54	1.60	1.44	1.46	1.62	1.57	1.56
La_2O_3	1.16	1.19	1.03	1.18	1.21	1.33	1.49	1.49	1.28	1.34
Sm_2O_3	0.17	0.20	0.16	0.19	0.18	0.19	0.23	0.24	0.19	0.23
Pr_2O_3	0.39	0.42	0.34	0.39	0.39	0.44	0.48	0.57	0.40	0.51
CaO	36.28	35.77	36.55	35.63	35.56	35.52	34.53	33.63	35.62	33.81
Nb_2O_5	0.54	0.55	0.47	0.87	0.87	0.87	1.15	1.01	0.58	0.61
SrO	0.11	0.16	0.12	0.13	0.14	0.14	0.15	0.14	0.14	0.15
ZrO ₂	0.13	0.12	0.13	0.17	0.18	0.15	0.17	0.11	0.12	0.12
ThO ₂	0.09	0.33	0.08	0.02	0.01	0.36	0.13	0.83	0.14	0.96
TiO ₂	54.51	53.62	54.78	53.36	53.18	54.29	53.42	52.03	53.54	52.57
BaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ce_2O_3	3.19	3.57	2.86	3.47	3.49	3.75	4.32	4.58	3.40	4.32
Nd_2O_3	1.42	1.62	1.29	1.49	1.44	1.66	1.83	2.11	1.46	2.01
Na ₂ O	0.65	0.74	0.61	0.71	0.72	0.78	0.84	0.93	0.64	0.89
MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ta_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.99	99.68	99. 77	99.15	98.98	100.92	100.20	99.31	99.08	99.14
S1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Fe	0.024	0.025	0.024	0.028	0.029	0.025	0.026	0.030	0.028	0.028
La	0.010	0.010	0.009	0.010	0.011	0.012	0.013	0.013	0.011	0.012
Sm	0.001	0.002	0.001	0.002	0.001	0.002	0.002	0.002	0.002	0.002
Pr	0.003	0.004	0.003	0.003	0.003	0.004	0.004	0.005	0.003	0.004
Ca	0.916	0.912	0.921	0.911	0.911	0.895	0.881	0.874	0.911	0.877
Nb	0.006	0.006	0.005	0.009	0.009	0.009	0.012	0.011	0.006	0.007
Sr	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Zr Th	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.001	0.001	0.001
In Ti	0.000	0.002	0.000	0.000	0.000	0.002	0.001	0.005	0.001	0.005
11 D-	0.966	0.960	0.969	0.957	0.956	0.961	0.957	0.950	0.961	0.957
Ва	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ce	0.028	0.031	0.025	0.030	0.031	0.032	0.038	0.041	0.030	0.038
Na Na	0.012	0.014	0.011	0.013	0.012	0.014	0.016	0.018	0.012	0.017
INa	0.030	0.034	0.028	0.033	0.034	0.035	0.039	0.044	0.030	0.042
Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ta	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Id Cations	0.000 1.000	0.000	1.000	2.000	0.000	1.005	1.000	1.005	1.000	1.005
	0.10	2.005	0.11	2.000	2.001	0.12	0.01	0.01	0.01	0.01
longwite	-0.10	0.01	-0.11	0.01	-0.11	-0.12	0.01	0.01	0.01	0.01
DEEE ₂ O	0.03	0.00	0.03	0.03	0.03	0.03	0.03	0.07	0.03	0.07
$KEEFeO_3$	0.02	0.02	0.02	0.05	0.05	0.05	0.03	0.03	0.03	0.05
DEE T: O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lakarraiite	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01
narouskite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
perovskile Earth	0.92	0.90	0.92	0.91	0.91	0.90	0.89	0.88	0.91	0.88
ΔΝΝΟ	4.15 -2.27	4.14 -2.08	-2.18	2.90 -1.76	5.00 -1.48	-2.75 -2.29	-2.11 -2.51	2.07 -1.49	4.50 -1.23	4.27 -1.23

Table B5. Major element compositions of ilmenite from LMI all samples. Structural formula calculated on the basis of 6 oxigens. C - core; R - rim; I - intermediate.

	,,	
LM3-1 11/22 R	$\begin{array}{c} 0.02\\ 38.56\\ 0.51\\ 0.51\\ 0.10\\ 0.10\\ 0.11\\ 0.40\\ 0.11\\ 0.11\\ 0.11\\ 0.00\\ 0.00\\ 0.00\\ 0.01\end{array}$	98.47 0.003 0.001 0.000 0.004 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.0001 0.002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000
LM3-1 11/21 C	$\begin{array}{c} 0.02\\ 39.09\\ 0.46\\ 0.03\\ 0.03\\ 0.03\\ 0.39\\ 0.39\\ 2.68\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$	97.92 0.003 0.001 0.000 0.0018 0.0018 0.0010 0.0010 0.0010 0.0010 0.000 0.000 0.000 0.000 0.000 0.000
LM3-1 10/20 R	$\begin{array}{c} 0.03\\ 32.08\\ 0.69\\ 0.11\\ 0.07\\ 0.07\\ 0.24\\ 51.57\\ 1.77\\ 1.77\\ 0.01\\ 12.85\\ 0.02\end{array}$	99.52 0.004 0.001 0.000 1.231 0.002 0.004 0.006 0.006 0.006 0.006 0.006 0.006 0.000 0.002 0.002 0.002 0.002
LM3-1 10/19 C	$\begin{array}{c} 0.00\\ 33.83\\ 0.58\\ 0.14\\ 0.01\\ 0.05\\ 0.32\\ 50.70\\ 1.75\\ 0.01\\ 1.75\\ 0.02\\ 0.02\end{array}$	99.48 0.003 0.000 0.000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002
LM-2 09/18 R	$\begin{array}{c} 0.03\\ 31.17\\ 0.43\\ 0.18\\ 0.00\\ 0.05\\ 0.11\\ 50.86\\ 3.84\\ 3.84\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$	99.36 0.003 0.001 0.007 0.007 0.007 0.003 0.003 0.003 0.003 0.000 0.000 0.000 0.000 0.000
LM-2 09/17 C	$\begin{array}{c} 0.02\\ 31.95\\ 0.38\\ 0.20\\ 0.03\\ 0.15\\ 3.85\\ 3.85\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.00\end{array}$	99.28 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000
LM-2 08/16 R	$\begin{array}{c} 0.03\\ 29.62\\ 0.78\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.04\\ 0.03\end{array}$	98.35 98.35 0.001 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.0117 0.001 0.001 0.001 0.003
LM-2 08/15 C	$\begin{array}{c} 0.02\\ 0.80\\ 0.80\\ 0.15\\ 0.05\\ 0.05\\ 0.02\\ 3.10\\ 0.01\\ 0.01\\ 0.01\end{array}$	98.25 0.001 0.001 0.000 0.003 0.005 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
LM-2 07/14 R	$\begin{array}{c} 0.03\\ 31.44\\ 0.51\\ 0.16\\ 0.02\\ 0.02\\ 0.19\\ 49.65\\ 4.22\\ 4.22\\ 0.03\\ 0.03\\ 0.01\end{array}$	98.51 98.51 0.003 0.001 0.000 0.001 0.001 0.001 0.001 0.844 0.001 0.844 0.001 0.844 0.001
LM-2] 07/13 C C	$\begin{array}{c} 0.01\\ 32.01\\ 0.44\\ 0.16\\ 0.01\\ 0.02\\ 0.17\\ 4.13\\ 4.13\\ 0.05\\ 0.02\\ 0.02\\ 0.02\end{array}$	98.54 98.54 0.003 0.000 0.001 1.251 0.001 0.001 0.001 0.001 0.002 0.153 0.002 0.815 0.002 0.815 0.002
LM-2 06/12 R	$\begin{array}{c} 0.04\\ 28.45\\ 0.72\\ 0.15\\ 0.16\\ 0.16\\ 0.16\\ 14.19\\ 0.07\\ 14.07\\ 0.04\end{array}$	99.31 0.005 0.002 0.000 0.005 0.006 0.006 0.006 0.006 0.006 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0005 0005 0005 0005 0005 0005 000000
LM-2 06/11 C	$\begin{array}{c} 0.02\\ 28.63\\ 0.71\\ 0.16\\ 0.02\\ 0.06\\ 0.15\\ 3.79\\ 3.79\\ 0.03\\ 0.03\\ 0.05\end{array}$	97.94 97.94 0.003 0.001 0.000 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.005
LM-2 05/10 R	$\begin{array}{c} 0.06\\ 37.85\\ 0.56\\ 0.07\\ 0.01\\ 0.11\\ 0.34\\ 1.15\\ 1.15\\ 1.15\\ 0.01\\ 0.03\\ 0.03\end{array}$	97.72 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003
LM-2 05/09 C	$\begin{array}{c} 0.02\\ 39.73\\ 0.45\\ 0.07\\ 0.01\\ 0.01\\ 0.40\\ 0.01\\ 1.10\\ 0.00\\ 8.61\\ 0.01\\ 0.01\end{array}$	97.18 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
LM-2 04/08 R	$\begin{array}{c} 0.03\\ 34.46\\ 0.59\\ 0.10\\ 0.10\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.12\\ 0.00\\ 11.49\\ 0.00\end{array}$	97.82 0.004 0.001 0.000 1.355 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004
LM-2 04/07 C	$\begin{array}{c} 0.02\\ 37.03\\ 0.47\\ 0.08\\ 0.06\\ 0.04\\ 0.15\\ 0.08\\ 0.15\\ 1.55\\ 1.55\\ 0.00\\ 0.00\\ 0.02\\ 0.02\end{array}$	97.64 0.005 0.001 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
LM-2 03/06 R	$\begin{array}{c} 0.02\\ 30.87\\ 0.45\\ 0.20\\ 0.02\\ 0.02\\ 0.02\\ 3.85\\ 3.85\\ 0.00\\ 0.00\\ 0.00\end{array}$	$\begin{array}{c} 97.99\\ 0.004\\ 0.001\\ 0.000\\ 0.008\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.000\\ 0.859\\ 0.000\\ 0.859\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.869\\ 0.000\\ 0.$
LM-2 03/05 C	$\begin{array}{c} 0.01\\ 31.70\\ 0.34\\ 0.22\\ 0.01\\ 0.01\\ 0.09\\ 3.94\\ 3.94\\ 0.01\\ 11.96\\ 0.00\\ 0.00 \end{array}$	98.45 98.45 0.004 0.000 0.008 0.0145 0.001 0.001 0.002 0.145 0.000 0.832 0.000 0.832 0.000
LM-2 02/04 R	$\begin{array}{c} 0.00\\ 30.48\\ 0.43\\ 0.22\\ 0.03\\ 0.00\\ 0.20\\ 0.20\\ 0.12\\ 0.00\\ 0.00\\ 0.02\\ 0.00\\ 0.02$	98.21 0.003 0.000 0.000 0.008 0.002 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002
LM-2 02/03 C	$\begin{array}{c} 0.05\\ 31.54\\ 0.32\\ 0.19\\ 0.01\\ 0.01\\ 0.20\\ 0.03\\ 11.86\\ 0.03\\ 0.00\\ 0.00\end{array}$	98.12 0.005 0.002 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.154 0.001 0.828 0.000 0.154 0.000
LM-2 01/02 R	$\begin{array}{c} 0.02\\ 29.87\\ 0.44\\ 0.21\\ 0.01\\ 0.05\\ 0.15\\ 0.15\\ 3.73\\ 3.73\\ 0.01\\ 0.01\\ 0.04\end{array}$	97.97 0.005 0.001 0.008 0.008 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
LM-2 01/01 C	$\begin{array}{c} 0.02\\ 31.17\\ 0.39\\ 0.21\\ 0.00\\ 0.00\\ 0.17\\ 50.01\\ 4.02\\ 12.29\\ 0.03\\ 0.03\end{array}$	$\begin{array}{c} 98.50\\ 0.009\\ 0.001\\ 0.000\\ 0.015\\ 0.015\\ 0.002\\ 0.004\\ 0.001\\ 0.001\\ 0.002\\ 0.$
Sample Grain/Analysis Location	$\begin{array}{c} \mathrm{SiO}_2 \\ \mathrm{FeO} \\ \mathrm{MnO} \\ \mathrm{MnO} \\ \mathrm{NiO} \\ \mathrm{K}_2 \\ \mathrm{CaO} \\ \mathrm{K}_2 \\ \mathrm{CaO} \\ \mathrm{Nb}_2 \\ \mathrm{O}_5 \\ \mathrm{Cr}_2 \\ \mathrm{O}_3 \\ \mathrm{MgO} \\ \mathrm{Na}_2 \\ \mathrm{O} \end{array}$	Total: Al Si Fe ³⁺ Fe ²⁺ Ti Ca N N N N Sn N Sn Total Total

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

es:
ate
di
ĩ
ч.
te
in
1
Γ
'n.
ri)
i.
R
2
8
i.
C
š
'n
60
XI.
0
60
0
is
<i>3S</i>
ρı
ie
tk
ш
łς
εc
at
п
l_{C}
ca
a
nl
ш
20
S
al
Ш
ct
n.
Sth
les
d
ш
sa
11
a
W
7
1
ис
fr
e,
nii
l01
lm.
fi
0
SU
101
sti
б,
łu
10
C
'n.
пе
le1
el
\mathcal{T}
ijс
Мι
~
<u>5</u> .
P
le
p

LM3-2 20/38 R	0.02	33.33	0.56	0.12	0.00	0.12	0.16	49.12	3.97	0.00	11.73	0.00	99.20	0.003	0.001	0.000	1.292	0.022	0.004	0.000	0.006	0.004	1.713	0.145	0.000	0.811	0.000	4.001
LM3-2 20/37 C	00.0	35.63	0.37	0.15	0.00	0.01	0.27	48.25	3.94	0.03	10.36	0.00	90.06	0.003	0.000	0.000	1.398	0.015	0.006	0.000	0.000	0.007	1.702	0.146	0.001	0.724	0.000	4.002
LM3-2 19/36 R	0.04	34.95	0.56	0.12	0.03	1.00	0.10	49.13	1.58	0.03	11.03	0.02	98.65	0.003	0.002	0.000	1.364	0.022	0.004	0.002	0.050	0.002	1.725	0.058	0.001	0.767	0.002	4.004
LM3-2 19/35 C	0.03	36.72	0.52	0.12	0.01	0.02	0.16	50.31	1.38	0.01	10.31	0.02	99.66	0.003	0.001	0.000	1.433	0.021	0.004	0.001	0.001	0.004	1.766	0.051	0.000	0.717	0.002	4.004
LM3-2 18/33 C	0.02	33.38	0.57	0.11	0.00	0.22	0.19	50.56	1.85	0.02	12.02	0.02	90.06	0.006	0.001	0.000	1.293	0.022	0.004	0.000	0.011	0.005	1.761	0.068	0.001	0.830	0.002	4.003
LM3-2 17/32 C	00.0	32.24	0.39	0.23	0.01	0.02	0.38	50.82	4.00	0.00	11.95	0.02	100.15	0.005	0.000	0.000	1.240	0.015	0.009	0.001	0.001	0.009	1.759	0.145	0.000	0.819	0.002	4.005
LM3-2 16/31 C	00.0	42.81	0.34	0.10	0.03	0.00	0.56	45.91	1.75	0.01	7.45	0.02	99.02	0.002	0.000	0.000	1.714	0.014	0.004	0.002	0.000	0.014	1.654	0.066	0.000	0.532	0.002	4.004
LM3-1 15/30 R	0.03	17.83	1.70	0.08	0.00	0.36	0.12	58.26	0.00	0.00	20.30	0.00	98.67	0.000	0.001	0.000	0.656	0.063	0.003	0.000	0.017	0.003	1.927	0.000	0.000	1.331	0.000	4.001
LM3-1 15/29 C	0.02	17.78	1.70	0.07	0.02	0.21	0.08	58.29	0.02	0.00	20.54	0.05	98.77	0.000	0.001	0.000	0.652	0.063	0.002	0.001	0.010	0.002	1.924	0.001	0.000	1.344	0.004	4.004
LM3-1 14/28 R	0.02	30.09	0.55	0.17	0.00	0.05	0.13	49.93	5.11	0.02	12.61	0.06	98.89	0.008	0.001	0.000	1.164	0.022	0.006	0.000	0.002	0.003	1.737	0.187	0.001	0.869	0.006	4.006
LM3-1 14/27 C	0.02	32.29	0.36	0.22	0.00	0.03	0.13	49.27	4.25	0.02	11.71	0.00	98.34	0.002	0.001	0.000	1.263	0.014	0.008	0.000	0.001	0.003	1.734	0.157	0.001	0.817	0.000	4.003
LM3-1 13/26 R	0.03	31.54	0.37	0.21	0.00	0.02	0.14	50.25	4.41	0.00	12.43	0.01	99.48	0.003	0.001	0.000	1.215	0.014	0.008	0.000	0.001	0.003	1.742	0.161	0.000	0.854	0.001	4.003
LM3-1 13/25 C	0.02	31.02	0.36	0.21	0.00	0.02	0.11	49.90	4.26	0.08	12.23	0.00	98.30	0.005	0.001	0.000	1.210	0.014	0.008	0.000	0.001	0.003	1.751	0.157	0.003	0.850	0.000	4.003
LM3-1 12/24 R	0.03	31.29	0.62	0.13	0.01	0.06	0.11	50.22	3.32	0.02	12.43	0.05	98.34	0.003	0.001	0.000	1.218	0.025	0.005	0.001	0.003	0.003	1.758	0.122	0.001	0.862	0.005	4.005
LM3-1 12/23 C	0.01	32.04	0.55	0.16	0.00	0.04	0.16	51.07	3.40	0.02	11.69	0.04	99.25	0.004	0.000	0.000	1.244	0.022	0.006	0.000	0.002	0.004	1.784	0.125	0.001	0.809	0.003	4.004
Sample Grain/Analysis Location	SiO,	FeO	MnO	NiO	K_2O	CaO	Nb_2O_5	TiO_2	Cr_2O_3	ZnO	MgO	Na_2O	Total:	AI	Si	Fe ³⁺	Fe^{2+}	Mn	Ni	K	Са	Nb	Τi	Cr	Zn	Mg	Na	Total

TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY:

Table B6. Major element compositions of clinopyroxene from TR-IV and LM-I.Structural formula calculated on the basis of 6 oxigens, following Morimoto (1988).

Struct	ural formu	la calculat	ted on the nediated n	0asis 01 (nt - matr	o oxigen ix: mega	s, Iollow	ng Mor rvst	imoto (1	988).	
Sample	TR-02A	TR-02A	TR-02A	TR-07	TR-07	TR-07	TR-07	TR-07	TR-07	LMI-B2
Grain/Analysis	01/01	02/03	03/04	04/05	04/06	05/07	11/13	12/16	13/17	01/01
Location	C	С	С	С	R	С	С	R	С	С
Crystal type	mt	mt	mt	mt	mt	mt	mt	mt	mt	mega
SiO ₂	51.72	51.76	51.76	52.92	51.30	51.25	51.01	52.09	53.34	52.73
TiO ₂	0.93	0.63	0.63	0.73	0.79	1.98	2.12	0.85	0.57	0.32
Al_2O_3	0.13	0.16	0.16	0.13	0.15	0.41	0.31	0.09	0.09	0.10
FeO	4.86	3.27	3.27	4.77	3.00	4.51	4.33	3.49	3.49	3.22
MnO	0.11	0.07	0.07	0.13	0.07	0.11	0.08	0.15	0.15	0.09
MgO	15.47	16.81	16.81	15.84	17.45	15.63	15.54	16.45	16.45	20.80
CaO	22.91	24.10	24.10	23.58	24.88	23.02	22.67	23.76	23.76	21.87
Na ₂ O	1.34	0.87	0.87	1.01	0.67	1.31	1.35	0.93	0.93	0.57
K_2O	0.01	0.00	0.00	0.01	0.02	0.00	0.01	0.03	0.03	0.21
Cr_2O_3	0.44	0.16	0.16	0.10	0.03	0.23	0.28	0.39	0.39	0.10
Total	97.91	97.83	97.83	99.22	98.36	98.45	97.69	98.23	99.20	100.00
Si (T)	1.928	1.919	1.919	1.948	1.889	1.902	1.908	1.929	1.956	1.887
Al (T)	0.006	0.007	0.007	0.005	0.007	0.018	0.014	0.004	0.004	0.004
Fe3 (T)	0.066	0.074	0.074	0.046	0.092	0.080	0.079	0.067	0.040	0.096
Σ(Τ)	2.000	2.000	2.000	2.000	1.988	2.000	2.000	2.000	2.000	1.988
Al (M1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti (M1)	0.026	0.018	0.018	0.020	0.022	0.055	0.060	0.024	0.016	0.009
Fe3+ (M1)	0.085	0.027	0.027	0.081	0.000	0.060	0.057	0.041	0.067	0.000
Cr (M1)	0.013	0.005	0.005	0.003	0.001	0.007	0.008	0.012	0.011	0.003
Mg (M1)	0.860	0.929	0.929	0.870	0.957	0.865	0.866	0.908	0.899	0.989
Fe2+ (M1)	0.000	0.000	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.000
Mn (M1)	0.004	0.002	0.002	0.004	0.002	0.003	0.002	0.005	0.005	0.000
Σ (M1)	0.988	0.980	0.980	0.997	0.982	0.991	0.993	0.989	0.999	1.000
Mg (M2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.121
Fe2+ (M2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn (M2)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
Ca (M2)	0.915	0.957	0.957	0.930	0.981	0.915	0.908	0.943	0.934	0.839
Na (M2)	0.097	0.062	0.062	0.072	0.048	0.094	0.098	0.067	0.066	0.040
K (M2)	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.001	0.001	0.010
Σ (M2)	1.012	1.020	1.020	1.003	1.030	1.009	1.007	1.011	1.001	1.012
Cations	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Sum	90.54	93.90	93.90	92.19	94.27	89.60	89.60	93.16	93.56	94.75
Xen	0.51	0.51	0.51	0.50	0.51	0.51	0.52	0.51	0.50	0.59
Xwo	0.49	0.49	0.49	0.49	0.49	0.48	0.48	0.49	0.49	0.41
Xfs	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00

Table B6. Major element compositions of clinopyroxene from TR-IV and LM-I.Structural formula calculated on the basis of 6 oxigens, following Morimoto (1988).

Struct	ural formu	Ia calculat	ted on the	basis of 6 (oxigens, to	llowing M	lorimoto (19
Samula	I M P D	$I M I_R \gamma$	I MI_A 1	$I MI_A 1$	<u>, ποga - Π</u> Ι ΜΙ_Λ 1	$I MI_{\Lambda} 1$	I MI_A1
Grain/Analysis	01/02	01/04	02/05	02/06	02/07	02/08	02/09
L ocation	R 01/02	01/04 R	02/03 C	02/00 R	02/07 R	02/08 C	02/09 C
Crystal type	mega	mega	mega	macro	macro	macro	macro
SiO	53.21	50.56	54 31	54 29	54 29	54.07	53.90
TiO ₂	0.36	0.26	0.15	0.14	0.23	0.18	0.21
	0.05	0.20	0.15	0.14	0.25	0.10	0.19
FeO	2.78	4 17	3.09	3.19	3 36	3.16	3.09
MnO	0.07	0.13	0.12	0.10	0.12	0.12	0.11
MgO	18.59	24 02	17.60	17 43	17.54	17.57	17 55
CaO	23.79	19.30	22.66	22.92	22.16	23.01	23.07
Na ₂ O	0.62	0.40	0.81	0.79	0.79	0.81	0.81
K ₂ O	0.10	0.14	0.00	0.00	0.01	0.01	0.03
Cr_2O_3	0.16	0.13	0.88	0.92	1.02	0.97	1.08
Total	99.72	99.44	99.82	100.02	99.85	100.11	100.02
Si(T)	1.925	1.801	1.973	1.970	1.974	1.959	1.955
Al (T)	0.002	0.015	0.009	0.010	0.014	0.009	0.008
Fe3 (T)	0.073	0.124	0.018	0.020	0.012	0.032	0.037
Σ(Τ)	2.000	1.940	2.000	2.000	2.000	2.000	2.000
Al (M1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti (M1)	0.010	0.007	0.004	0.004	0.006	0.005	0.006
Fe3+ (M1)	0.011	0.000	0.051	0.051	0.040	0.061	0.056
Cr (M1)	0.005	0.004	0.025	0.027	0.029	0.028	0.031
Mg (M1)	0.975	0.989	0.920	0.919	0.924	0.907	0.907
Fe2+ (M1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn (M1)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Σ (M1)	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mg (M2)	0.028	0.286	0.033	0.024	0.027	0.042	0.042
Fe2+(M2)	0.000	0.000	0.025	0.026	0.050	0.003	0.000
Mn (M2)	0.002	0.004	0.004	0.003	0.004	0.004	0.003
Ca (M2)	0.922	0.737	0.882	0.891	0.863	0.893	0.896
Na (M2)	0.043	0.027	0.057	0.055	0.056	0.057	0.057
K (M2)	0.005	0.006	0.000	0.000	0.000	0.000	0.001
Σ (M2)	1.000	1.060	1.000	1.000	1.000	1.000	1.000
Cations	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Sum	95.25	93.60	96.19	96.09	96.73	94.90	94.79
Xen	0.53	0.66	0.52	0.51	0.51	0.52	0.52
Xwo	0.47	0.33	0.47	0.47	0.46	0.47	0.47
Xts	1 0 00	0.00	0.02	0.02	0.03	0.00	0.00

Sample	TR-04A	TR-04A	TR-04A	TR-04A	TR-04A	TR-04B	TR-07 241	TR-07 241								
Grain/Analysis	01/01	01/02	01/03	02/04	02/06	03/07	03/08	03/09	04/10	04/11	04/12	05/13	05/14	05/15	06/16	07/17
Location	С	Ι	R	С	R	С	Ι	R	С	Ι	R	С	Ι	R	С	С
SiO_2	42.06	42.19	41.58	42.08	42.56	42.52	42.54	42.17	42.44	42.68	42.25	42.53	42.17	42.74	41.91	41.51
TiO_2	0.22	0.21	0.22	0.26	0.12	0.06	0.09	0.05	0.23	0.20	0.20	0.02	0.08	0.05	0.03	0.08
Al_2O_3	20.94	21.14	20.65	22.87	23.03	20.63	20.72	20.58	22.20	22.38	22.32	20.59	20.55	20.66	21.24	21.08
Cr_2O_3	2.90	2.78	3.31	0.91	0.67	4.25	4.02	4.30	1.49	1.34	1.37	4.26	4.34	4.39	2.86	2.95
FeO_T	9.22	9.44	8.99	9.38	9.20	7.49	7.34	7.63	9.56	9.44	9.74	7.62	7.48	7.55	8.79	8.42
MnO	0.40	0.39	0.41	0.35	0.32	0.39	0.37	0.43	0.42	0.42	0.36	0.38	0.37	0.43	0.42	0.41
MgO	19.38	19.34	19.15	20.26	19.43	21.19	21.04	20.07	19.62	19.68	19.71	20.71	20.81	20.55	19.97	19.78
CaO	4.81	4.82	4.81	3.99	4.05	4.41	4.66	5.16	4.59	4.50	4.59	4.72	4.68	4.80	4.78	4.76
Na_2O	0.04	0.03	0.07	0.04	0.04	0.05	0.02	0.04	0.08	0.07	0.05	0.03	0.02	0.04	0.02	0.02
Total	99.98	100.33	99.20	100.14	99.42	100.99	100.79	100.42	100.63	100.70	100.59	100.86	100.49	101.22	100.01	99.01
Si	3.000	3.000	3.000	2.988	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	2.998	3.000	2.997	2.998
$\mathbf{Al}^{\mathrm{IV}}$	0.000	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.003	0.002
ΣT	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Si	0.021	0.021	0.013	0.000	0.049	0.004	0.011	0.009	0.014	0.027	0.001	0.015	0.000	0.022	0.000	0.000
Τi	0.012	0.011	0.012	0.014	0.006	0.003	0.005	0.003	0.012	0.011	0.011	0.001	0.004	0.003	0.002	0.004
$\mathbf{Al}^{\mathrm{VI}}$	1.772	1.784	1.764	1.903	1.944	1.718	1.728	1.730	1.859	1.870	1.868	1.720	1.720	1.721	1.788	1.792
Cr	0.165	0.157	0.190	0.051	0.038	0.238	0.225	0.243	0.084	0.075	0.077	0.239	0.244	0.246	0.162	0.169
Fe^{2+}	0.006	0.006	0.003	0.000	0.000	0.000	0.002	0.000	0.001	0.000	0.004	0.000	0.000	0.000	0.000	0.000
Fe^{3+}	0.002	0.000	0.006	0.034	0.000	0.037	0.019	0.009	0.015	0.000	0.038	0.013	0.032	0.000	0.052	0.034
Mg	0.021	0.021	0.013	0.000	0.000	0.001	0.011	0.006	0.014	0.017	0.001	0.012	0.000	0.008	0.000	0.000
ΣA	2.000	2.000	2.000	2.002	2.038	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.003	2.000
Fe^{2+}	0.545	0.560	0.536	0.523	0.551	0.406	0.413	0.446	0.551	0.560	0.536	0.439	0.413	0.446	0.474	0.474
Mg	2.054	2.043	2.056	2.145	2.075	2.231	2.209	2.129	2.064	2.063	2.086	2.176	2.205	2.158	2.129	2.130
Mn	0.025	0.023	0.025	0.021	0.020	0.023	0.022	0.026	0.025	0.025	0.022	0.023	0.022	0.026	0.026	0.025
Ca	0.370	0.370	0.374	0.304	0.311	0.334	0.353	0.394	0.349	0.342	0.350	0.359	0.356	0.364	0.366	0.368
Na	0.006	0.004	0.009	0.005	0.006	0.007	0.003	0.005	0.011	0.010	0.006	0.004	0.003	0.006	0.002	0.002
ΣB	3.000	3.000	3.000	2.998	2.962	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	2.997	3.000
Uvarovite	0.08	0.08	0.09	0.03	0.02	0.11	0.11	0.12	0.04	0.04	0.04	0.12	0.12	0.12	0.08	0.08
Spessartine	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Pyrope	0.66	0.66	0.67	0.72	0.69	0.73	0.73	0.70	0.67	0.67	0.69	0.71	0.73	0.71	0.71	0.71
Almandine	0.18	0.19	0.18	0.17	0.18	0.12	0.13	0.15	0.18	0.19	0.18	0.14	0.12	0.14	0.16	0.16
Grossular	0.03	0.04	0.02	0.06	0.08	0.00	0.00	0.00	0.06	0.07	0.05	0.00	0.00	0.00	0.02	0.02
Andradite	0.00	0.00	0.00	0.01	0.00	00.00	0.00	0.00	0.01	00.00	0.02	0.00	0.00	00.00	0.02	0.02

Table B7. Major element compostions of garnet from TR-IV . Structural formula calculated on the basis of 8 cations and 12 anions. Supplementary Material B

OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY:

TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS

DOI: 10.1590/2317-4889202020190087

Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

Endm	embers ca	lculated fo	llowing L	ocock, (20	08). C - c	ore; R - 1	rim; I - in	itermediate.	
Sample	TR-07 241	TR-07 241	TR-07 241	TR-07 241	TRIV-5-2	TRIV-5-2	TRIV-5-2	TRIV-5-2	
Grain/Analysis	07/18	07/18	08/19	08/20	09/21	09/22	10/23	11/24	
Location	R	Я	C	R	C	R	C	R	
SiO_2	43.23	43.23	41.94	41.79	40.70	40.99	40.72	40.68	
TiO_2	0.09	0.09	0.05	0.06	0.13	0.04	0.10	0.06	
Al_2O_3	21.80	21.80	21.30	21.23	17.98	18.11	18.12	18.06	
$Cr_{2}O_{3}$	2.92	2.92	3.01	2.91	6.94	6.97	7.04	7.20	
FeO_T	8.61	8.61	8.76	8.60	7.81	7.93	8.15	8.05	
MnO	0.40	0.40	0.47	0.49	0.43	0.46	0.44	0.45	
MgO	18.83	18.83	20.06	20.47	19.08	18.97	18.91	18.86	
CaO	4.86	4.86	4.69	4.68	5.67	5.67	5.57	5.58	
Na_2O	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.00	
Total	100.75	100.75	100.30	100.22	98.75	99.15	90.06	98.94	
Si	3.000	3.000	2.992	2.977	2.990	3.000	2.987	2.988	
$\mathbf{Al}^{\mathrm{IV}}$	0.000	0.000	0.008	0.023	0.010	0.000	0.013	0.012	
ΣT	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	
Si	0.084	0.084	0.000	0.000	0.000	0.001	0.000	0.000	
Ti	0.005	0.005	0.003	0.003	0.007	0.002	0.006	0.003	
AI^{VI}	1.833	1.833	1.782	1.760	1.547	1.563	1.553	1.552	
Cr	0.165	0.165	0.170	0.164	0.403	0.404	0.408	0.418	
Fe^{2+}	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	
Fe^{3+}	0.000	0.000	0.054	0.093	0.045	0.026	0.040	0.035	
Mg	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	
ΣA	2.087	2.087	2.009	2.020	2.003	2.000	2.007	2.008	
Fe^{2+}	0.514	0.514	0.468	0.419	0.434	0.457	0.460	0.459	
Mg	2.003	2.003	2.133	2.174	2.090	2.069	2.068	2.065	
Mn	0.024	0.024	0.028	0.029	0.027	0.029	0.027	0.028	
Са	0.371	0.371	0.359	0.357	0.446	0.445	0.438	0.439	
Na	0.001	0.001	0.003	0.001	0.000	0.000	0.000	0.000	
ΣB	2.913	2.913	2.991	2.980	2.997	3.000	2.993	2.992	
Uvarovite	0.08	0.08	0.08	0.08	0.15	0.15	0.14	0.14	
Spessartine	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
Pyrope	0.67	0.67	0.71	0.72	0.64	0.63	0.63	0.62	
Almandine	0.17	0.17	0.16	0.14	0.12	0.14	0.14	0.14	
Grossular	0.04	0.04	0.01	0.01	0.00	0.00	0.00	0.00	
Andradite	0 00	0.00	0 00	0.03	0 00	0 00	0.00	0 00	

ulated on the basis of 8 cations and 12 anions. -5 ż VI GT ę ¢ • Supplementary Material B Table R7 Major element

TRÊS RANCHOS IV AND LIMEIRA I INTRUSIONS Bruna Coldebella, Rogério Guitarrari Azzone, Luanna Chmyz, Excelso Ruberti, Darcy P. Svisero

DOI: 10.1590/2317-4889202020190087 OXYGEN FUGACITY OF THE ALTO PARANAÍBA KIMBERLITES AND DIAMOND INSTABILITY: